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Self-consistent field (SCF) theory

• Consider the optimization of the SCF energy (here LDA) of molecular systems:

– small systems

dominated by

KS-matrix evaluation,

with linear scaling

– large systems

dominated by SCF

diagonalization, with

cubic scaling

FC = SCǫ

Dnew = CoccC
T
occ
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• To achieve linear scaling, we must avoid diagonalization and MOs!

• We shall here consider an alternative to diagonalization:

– it optimizes the density matrix directly, avoiding MOs

– involves only additions and multiplications of (sparse) one-electron matrices

– for large (sparse systems), the calculations scale linearly with system size
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Direct optimization of the density matrix

• Consider the direct optimization of the density matrix:

E(D) = TrDh + 2-el. part

– there are constraints on the density matrix:

D = DT
| {z }

symmetry

, TrD = N| {z }
trace

, D2 = D| {z }
idempotency

(orthonormal basis)

– any optimization must obey these constraints

• Many strategies are based on purification of the density matrix

eD = 3D2 − 2D3 (McWeeny purification, 1960)

– Li, Nunes and Vanderbilt (1993)

eE = Tr eDh + µ(TrD−N) + 2-el. part

– Millam and Scuseria (1997), Challacombe (1999)

– Palser and Manolopoulos (1998), Niklasson (2002)

• We shall pursue a different approach, based on an explicitly parameterization of D
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Exponential parameterization of the density matrix

• In a real, nonorthogonal AO basis, with S 6= I, let D be a valid HF/KS matrix:

D = DT
| {z }

symmetry

, TrDS = N| {z }
trace

, DSD = D| {z }
idempotency

• Any other valid density matrix D(X) can then be generated from this matrix:

D(X) = exp(−XS)D exp(SX)
| {z }
exponential parameterization

, XT = −X| {z }
antisymmetric

– Helgaker, Jørgensen and Olsen: Molecular Electronic-Structure Theory (Wiley, 2000)

– Head-Gordon and coworkers, MolPhys 101, 37 (2003), JCP 118, 6144 (2003)

• We can obtain any valid density matrix, in the AO basis, without recourse to MOs!

– in particular, we may optimize the energy by freely varying Xµν with µ > ν:

Emin(X) = min
X

[TrD(X)h + 2-el. part]

• Is the use of D(X) a practical proposition?

– we shall in this talk demonstrate that it is indeed so

– we shall consider energy optimizations and property calculations
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Two questions about D(X) = exp(−XS)D exp(SX)

• Can it be evaluated efficiently?

– we use a generalized Baker–Campbell–Hausdorff (BCH) expansion:

D(X) = D +
ˆ
D,X

˜
S

+ 1
2

ˆˆ
D,X

˜
S
,X

˜
S

+ · · ·

– we have here introduced the S commutator
ˆ
D,X

˜
S

= DSX−XSD

– converges rapidly (purification may be necessary), in about 10 matrix multiplications

• Are redundancies a problem?

– the AO space consists of two parts: the occupied space and the virtual space

P = DS (onto occupied space), Q = I−DS (onto virtual space)

– only rotations between the occupied and virtual spaces are nonredundant:

X = PXPT + QXQT

| {z }
redundant

+ PXQT + QXPT

| {z }
Xov

– to avoid problems with redundancies, we use the projected parameterization

D(X) = exp(−XovS)D exp(SXov), XT = −X
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Diagonalization-free Roothaan–Hall SCF optimization

• The SCF (Fock or Kohn–Sham) energy may, in principle, be optimized directly:

Emin = min
X

E(X) ⇔ F(D)DS = SDF(D)
| {z }
stationary condition

– a difficult global minimization problem!

• In MO theory, the Roothaan–Hall SCF scheme works well, especially with DIIS:

F = h + g(D)
F
⇄
D

FC = SCǫ; Dnew = CoccC
T
occ

– each diagonalization is equivalent to minimizing the sum of the (occ.) orbital energies

ε(X) =
X

I

ǫI = TrD(X)F

• By analogy with MO theory, we set up the following Roothaan–Hall SCF scheme:

F = h + g(D)
F
⇄
D

εmin = min
X

TrD(X)F; Dnew = D(X∗)

– at each SCF iteration, we minimize Tr D(X)F with respect to X

– the new density is then obtained by expansion of D(X) with the minimizer X∗

• We thus avoid MOs and diagonalization but retain the SCF iterations
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Newton minimization of the Roothaan–Hall energy function

• At each SCF iteration, our task is to minimize the Roothaan–Hall energy function

ε(X) = TrD(X)F = TrDF + Tr
ˆ
D,X

˜
S
F + 1

2
Tr

ˆˆ
D,X

˜
S
,X

˜
S
F + · · ·

• Truncating to second order and setting the gradient to zero, we obtain the Newton step:

HXS + SXH = G ← the Roothaan–Hall Newton equation

– where the (negative) gradient and Hessian matrices are given by

G = Fvo − Fov

H = Fvv − Foo F = Foo+Fov+Fvo+Fvv

• A RH diagonalization corresponds to an exact minimization (many Newton steps)

– however, a partial minimization will do

– in fact, one RH Newton step is usually sufficient

• Because of their large dimensions, the Newton equations cannot be solved directly

– we use an iterative scheme: the conjugate-gradient method

– key step: repeated evaluation of the residual R = G−HXS− SXH

– all operations are elementary (sparse) matrix manipulations
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Solution of the Roothaan–Hall Newton equations

• At each SCF iteration, we solve the Roothaan–Hall Newton equations

HXS + SXH = G

– a näıve application of the CG method converges slowly

– the equations are ill-conditioned since κ(H)κ(S)≫ 1 (κ is the condition number)

• The equations may be made well-conditioned by a Löwdin orthonormalization

eHZ + Z eH = eG, eA = S−1/2AS−1/2

– convergence is greatly improved since κ( eH) = κ(S−1/2HS−1/2)≪ κ(H)κ(S)

– we obtain S−1/2 by an iterative scheme (B. Janśık)

– orthogonalization is also possible by Cholesky decomposition S = UTU

– Millam and Scuseria (1996), Challacombe (1998), Head-Gordon et al. (2003)

• Further diagonal preconditioning cuts the number of iterations by one half

eeH = eH−1
diag

eH

– 10 iterations typically reduce the residual by two orders of magnitude

• About 70 multiplications needed for one Newton iteration with density-matrix generation
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Iterative solution of Roothaan–Hall Newton equations

• Logarithmic plots of the residual against the number of iterations

– H2O, LDA/t-aug-cc-pVTZ

– 99 alanine residue peptides, LDA/6-31G (5449 AOs)
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CPU time spent in Roothaan–Hall Newton equations

• We have successfully avoided Fock/Kohn–Sham diagonalization

– minimization rather than the solution of a generalized eigenvalue problem

– rapidly convergent: 50–100 sparse matrix multiplications needed

• Linear scaling is obtained by employing sparse-matrix algebra

– compressed sparse-row (CSR) representation of few-atom blocks
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SCF optimizations in small and large molecules

• Diagonalization can be avoided by solving Newton equations

• However, SCF convergence is typically more difficult in larger systems

– small (or negative) HOMO-LUMO gaps and small Hessian eigenvalues in DFT

– lowest Hessian eigenvalue and HOMO-LUMO gap in alanine residue peptides (6-31G)
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• We have modified the standard SCF scheme, to make it more robust
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The trust-region self-consistent field (TRSCF) method

• SCF optimizations have two ingredients

1. Roothaan–Hall minimization (diagonalization): minX TrD(X)F

2. DIIS-type averaging of density matrices: D =
Pn

i=0ciDi,
P

i ci = 1

• In the Roothaan–Hall step, we minimize subject to a constraint on the step size:

– this amounts to a simple level shifting of the Fock/Kohn–Sham matrix

F → F(µ) = F− µSoo (only occupied–occupied part shifted)

– for µ > 0, the HOMO–LUMO gap increases, making large steps unfavourable

– µ is adjusted until step is of desired length, during the iterative solution

• In the averaging step, we construct a second-order model of the SCF energy

EDSM(ci) ≈ ESCF(3DSD− 2DSDSD)

– it has the correct gradient but an approximate Hessian

– the best density matrix is obtained by minimization, subject to a step-size constraint

min
ci

EDSM(ci) ← density-subspace minimization (DSM)

• JCP 121, 15 (2004); JCP 123, 074103 (2005)
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The TRSCF method (continued)

• The TRSCF method gives a stable and uniform convergence towards the SCF minimum

• Convergence of LDA calculations for a variety of molecules

– zinc complex(+), rhodium complex(×), cadmium complex(∗), CH3CHO(2) and H2O(�)
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• Problems arise with small Hessian eigenvalues and small (negative) HOMO–LUMO gaps

– Note: a Newton step of TrFD is a quasi-Newton step of ESCF(D)

– we are doing a quasi-Newton optimization of the energy

– the quasi-Newton step is poor for small or negative HOMO–LUMO gaps

– revert to full Newton if necessary: min TrFD→ min ESCF(D)
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Illustration: alanine residue peptides

• Features of the code

– diagonalization-free trust-region Roothaan–Hall (TRRH) energy minimization

– trust-region density-subspace minimization (TRDSM) for density averaging

– boxed density-fitting with FMM for Coulomb evaluation (Simen Reine)

– LinK for exact exchange, linear-scaling exchange-correlation evaluation

– compressed sparse-row (CSR) representation of few-atom blocks

• alanine residue peptides

– CPU time against atoms

– HF/6-31G

– 5th SCF iteration

– dominated by exchange

– RH step least expensive

– full lines: sparse algebra

– dashed lines: dens algebra
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Response theory

• The expectation value of Â in the presence of a perturbation V̂ω of frequency ω:

˙
t
˛̨
Â

˛̨
t
¸

=
˙
0

˛̨
Â

˛̨
0

¸
+

Z
〈〈Â; V̂ω〉〉ω exp (−iωt) dω + · · ·

– the linear-response function 〈〈Â; V̂ω〉〉ω carries information about the first-order

change in the expectation value

• The linear-response function may be represented compactly as:

〈〈Â; V̂ ω〉〉ω = −A[1]T
`
E[2] − ωS[2]

´
−1

V
[1]
ω| {z }

linear equations

←

8
><
>:

E
[2] electronic Hessian

S
[2] metric matrix

A
[1] = vec

`

ADS − SDA
´

• In practice, the response functions are evaluated by solving a set of linear equations

`
E[2] − ωS[2]

´
N[1] = −V

[1]
ω

〈〈Â; V̂ ω〉〉ω = A[1]TN[1]

– can this be accomplished efficiently in the AO basis?
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Solution of the response equations

• The response equations are solved in the same manner as the RH Newton equations:
`
E[2] − ωS[2]

´
x = V[1]

– transformation to orthogonal basis (Cholesky or Löwdin)

– generation of an iterative subspace until the residual is sufficiently small

R =
`
E[2] − ωS[2]

´
x−V[1]

• Key step: multiplication of Hessian and metric matrices with trial vectors

E[2](X) = HXS + SXH + gvo([D,X]S)− gov([D,X]S)

S[2](X) = SooXSvv − SvvXSoo

– requires recalculation of Fock/Kohn–Sham matrix with modified AO density matrix

• For rapid convergence, the residual vector is preconditioned

eR = M−1R, M = E[2] − ωS[2] − expensive parts

– nondiagonal preconditioning requires about 5 conjugate-gradient steps

• With this preconditioner, the response equations converge in about 4 iterations

– indeed, this is the same convergence as in the canonical MO basis

– total cost: 4 Fock/Kohn–Sham evaluations, 100 matrix multiplications
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Longitudinal polarizability of long polymeric chains

• Consider the longitudinal polarizability of a polymeric chain
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– the polarizability α(N) is an extensive property, proportional to N

– the group polarizability α = α(N)/N is an intensive quantity

• Why does the group polarizability increase with increasing chain length?

– each monomer experiences a local field different from the external field,

arising from the induced dipoles of the neighboring monomers

– with increasing chain length, more dipoles contribute to the local field

– the chain acts essentially like a one-dimensional dielectric

• How do standard SCF models handle this induced field?

– we have calculated longitudinal polarizabilities of polymeric chains

– trans-polyethylenes (alkanes) and trans-polyacetylenes (alkenes)

– all calculations have been carried out using the AO methods described above
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Polarizabilities of linear alkanes and alkenes

• To illustrate, we have calculated longitudinal polarizabilities in linear polymeric chains

– HF and DFT α and α/N in 6-31G basis, plotted against the number of carbons N
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• The alkenes are about an order of magnitude more polarizable than the alkanes

– all models agree on alkanes (α/N -limit: HF 14.4; LDA 16.3)

– widely different results for alkenes (α/N -limit: HF 97; LDA 427)
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Long-range behaviour of the effective one-electron potential

• The standard functionals provide an incorrect description of exchange at long range

– the exchange potentials fall off exponentially and not like −r−1

– affects Rydberg and charge-transfer excitations, polarizability of long chains

• Many solutions have been proposed over the years

– asymptotic correction (AC) of Tozer and Handy (1998)

– time-dependent current-DFT (TDCDFT) of Snijders and coworkers (2002)

• Hartree–Fock theory, with its exact treatment of exchange, has none of these problems

– at long range, the exchange potential decays like −r−1

• Hirao and coworkers (2001) introduced an Ewald split of r−1
12

1

r12
=

1− erf(µr12)

r12
+

erf(µr12)

r12

– the first part is treated functionally, the second exactly

– corrects the asymptotic behaviour, retaining the good DFT behaviour at short range

– some exact exchange may be good at short range: CAM-B3LYP, Yanai et al. (2004)

– infinitely many combinations are possible
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The importance of exact exchange for longitudinal polarizabilities

• Without a good description of long-range exchange, the systems become too polarizable
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– the Hartree model neglects all exchange and overestimates by a factor of eight

– pure DFT has a poor long-range exchange and overestimates by a factor of four

– hybrid functionals improve the situation, introducing some exact exchange

– compromise solution: standard DFT at short range, full exchange at long range
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The importance of exact exchange for longitudinal polarizabilities

• Without a good description of long-range exchange, the systems become too polarizable
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– the Hartree model neglects all exchange and overestimates by a factor of eight

– pure DFT has a poor long-range exchange and overestimate by a factor of four

– hybrid functionals improve the situation, introducing some exact exchange

– compromise solution: standard DFT at short range, full exchange at long range
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Asymptotic behaviour of group polarizabilities

• How does the group polarizability converge towards the infinite limit?

α∞ − αN = eN−1 +O(N−2) Kudin et al., JCP 122, 134907 (2005)

– this behaviour is universal, holding at all levels of theory

• Log–log plots of α∞ − αN for alkanes and alkenes:
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– limit obtained by extrapolation α∞ = (αN − αM )/(N −M)

– straight lines of slope −1 superimposed through the points at N = 350

• The asymptotic region is reached with C30H62 (alkanes) and C60H62 (alkenes)

– alkane α∞ predicted to within 1% from C30H62

– alkene α∞ predicted to within 1% from C60H62 for HF and from C150H152 for LDA
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Sparsity of linear alkanes and alkenes

• Each energy optimization was converged in 6–14 SCF iterations

– about 70 matrix multiplications for each TRRH step (diagonalization)

– about 50 matrix multiplications for each TRDMS step (DIIS)

• Each polarizability component required 3–4 response iterations

– about 20 matrix multiplications in each iteration

• Percentage of matrix elements greater than 10−6 in alkane and alkene chains

– overlap matrix:

- sparse

– density matrix:

- nonsparse for alkenes

- sparse for alkanes

– Fock/KS matrices:

- KS matrix like overlap

- Fock matrix

intermediate

between overlap and

density matrices
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Conclusions

• We have discussed the optimization of SCF energies without MOs

– in each SCF iteration, we replace diagonalization by minimization

– minimization by Newton’s method, one step is usually enough

– minimization stable and fast, highly competitive with diagonalization

– 50–100 sparse matrix multiplications required

• Large molecules represent a more difficult minimization problem

– small Hessian eigenvalues for pure DFT

– trust-region SCF: careful step-size control

– revert to second-order if necessary

• Linear-response is straightforward in the AO basis

– one Fock/Kohn–Sham matrix build and 20 matrix multiplications pr. iteration

– stable convergence in 3–5 iterations
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