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Electronic Hamiltonian

Section 1

Electronic Hamiltonian
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Electronic Hamiltonian Particle in a Conservative Force Field

Hamiltonian Mechanics

I In classical Hamiltonian mechanics, a system of particles is described in terms of their
positions qi and conjugate momenta pi .

I For each system, there exists a scalar Hamiltonian function H(qi , pi ) such that the classical
equations of motion are given by:

q̇i =
∂H

∂pi
, ṗi = − ∂H

∂qi
(Hamilton’s equations)

I note: the Hamiltonian H is not unique!

I Example: a single particle of mass m in a conservative force field F (q)

I the Hamiltonian is constructed from the corresponding scalar potential:

H(q, p) =
p2

2m
+ V (q), F (q) = −∂V (q)

∂q

I Hamilton’s equations of motion are equivalent to Newton’s equations:

q̇ = ∂H(q,p)
∂p

= p
m

ṗ = − ∂H(q,p)
∂q

= − ∂V (q)
∂q

}
=⇒ mq̈ = F (q) (Newton’s equations)

I Hamilton’s equations are first-order differential equations – Newton’s are second-order
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Electronic Hamiltonian Particle in a Conservative Force Field

Quantization of a Particle in a Conservative Force Field

I The Hamiltonian formulation is more general than the Newtonian formulation:

I it is invariant to coordinate transformations
I it provides a uniform description of matter and field
I it constitutes the springboard to quantum mechanics

I The Hamiltonian function (total energy) of a particle in a conservative force field:

H(q, p) =
p2

2m
+ V (q)

I Standard rule for quantization (in Cartesian coordinates):

I carry out the operator substitutions

p→ −i~∇, H → i~
∂

∂t

I multiply the resulting expression by the wave function Ψ(q) from the right:

i~
∂Ψ(q)

∂t
=

[
− ~2

2m
∇2 + V (q)

]
Ψ(q)

I This approach is sufficient for a treatment of electrons in an electrostatic field

I it is insufficient for nonconservative systems
I it is therefore inappropriate for systems in a general electromagnetic field
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Electronic Hamiltonian Particle in a Lorentz Force Field

Lorentz Force and Maxwell’s Equations

I In the presence of an electric field E and a magnetic field (magnetic induction) B,
a classical particle of charge z experiences the Lorentz force:

F = z (E + v × B)

I since this force depends on the velocity v of the particle, it is not conservative

I The electric and magnetic fields E(r, t) and B(r, t) satisfy Maxwell’s equations (1861–1868):

∇ · E = ρ/ε0 ← Coulomb’s law

∇× B− ε0µ0 ∂E/∂t = µ0J ← Ampère’s law with Maxwell’s correction

∇ · B = 0

∇× E + ∂B/∂t = 0 ← Faraday’s law of induction

where ρ(r, t) and J(r, t) are the charge and current densities, respectively

I Note:

I when ρ and J are known, Maxwell’s equations can be solved for E and B
I but the particles are driven by the Lorentz force, so ρ and J are functions of E and B

I We here consider the motion of particles in a given (fixed) electromagnetic field
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Electronic Hamiltonian Particle in a Lorentz Force Field

Scalar and Vector Potentials

I The second, homogeneous pair of Maxwell’s equations involves only E and B:

∇ · B = 0 (1)

∇× E +
∂B

∂t
= 0 (2)

1 Eq. (1) is satisfied by introducing the vector potential A:

∇ · B = 0 =⇒ B = ∇× A ← vector potential (3)

2 inserting Eq. (3) in Eq. (2) and introducing a scalar potential φ, we obtain

∇×
(
E +

∂A

∂t

)
= 0 =⇒ E +

∂A

∂t
= −∇φ ← scalar potential

I The second pair of Maxwell’s equations is thus automatically satisfied by writing

E = −∇φ−
∂A

∂t

B = ∇× A

I The potentials (φ,A) contain four rather than six components as in (E,B).

I φ and A are obtained by solving the inhomogeneous pair of Maxwell’s equations,
containing ρ and J
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Electronic Hamiltonian Particle in a Lorentz Force Field

Gauge Transformations

I Consider the following gauge transformation of the potentials:

φ′ = φ− ∂f
∂t

A′ = A + ∇f

}
with f = f (q, t) ← gauge function of position and time

I Such a transformation of the potentials does not affect the physical fields:

E′ = −∇φ
′ −

∂A′

∂t
= −∇φ + ∇

∂f

∂t
−
∂A

∂t
−
∂∇f

∂t
= E

B′ = ∇× A′ = ∇× (A + ∇f ) = B + ∇×∇f = B

I Conclusion: the scalar and vector potentials φ and A are not unique

I we are free to choose f (q, t) to make the potentials satisfy additional conditions
I typically, we require the vector potential to be divergenceless:

∇ · A′ = 0 =⇒ ∇ · (A + ∇f ) = 0 =⇒ ∇2f = −∇ · A ← Coulomb gauge

I We shall always assume that the vector potential satisfies the Coulomb gauge:

∇× A = B, ∇ · A = 0 ← Coulomb gauge

I note: A is still not uniquely determined, the following transformation being allowed:

A′ = A + ∇f , ∇2f = 0
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Electronic Hamiltonian Particle in a Lorentz Force Field

Hamiltonian in an Electromagnetic Field

I We must construct a Hamiltonian function such that
Hamilton’s equations are equivalent to Newton’s equation with the Lorentz force:

q̇i =
∂H

∂pi
& ṗi = − ∂H

∂qi
⇐⇒ ma = z (E + v × B)

I To this end, we introduce scalar and vector potentials φ and A such that

E = −∇φ− ∂A

∂t
, B = ∇× A

I In terms of these potentials, the classical Hamiltonian function becomes

H =
π2

2m
+ zφ, π = p− zA ← kinetic momentum

I Quantization is then accomplished in the usual manner, by the substitutions

p→ −i~∇, H → i~
∂

∂t

I The time-dependent Schrödinger equation for a particle in an electromagnetic field:

i~
∂Ψ

∂t
=

1

2m
(−i~∇− zA) · (−i~∇− zA) Ψ + zφΨ
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Electronic Hamiltonian Electron Spin

Electron Spin

I The nonrelativistic Hamiltonian for an electron in an electromagnetic field is then given by:

H =
π2

2m
− eφ, π = −i~∇ + eA

I However, this description ignores a fundamental property of the electron: spin.

I Spin was introduced by Pauli in 1927, to fit experimental observations:

H =
(σ · π)2

2m
− eφ =

π2

2m
+

e~
2m

B · σ − eφ

where σ contains three operators, represented by the two-by-two Pauli spin matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
I The Schrödinger equation now becomes a two-component equation:(

π2

2m
− eφ+ e~

2m
Bz

e~
2m

(Bx − iBy )
e~
2m

(Bx + iBy ) π2

2m
− eφ− e~

2m
Bz

)(
Ψα
Ψβ

)
= E

(
Ψα
Ψβ

)

I Note: the two components are coupled only in the presence of an external magnetic field
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Electronic Hamiltonian Electron Spin

Spin and Relativity

I The introduction of spin by Pauli in 1927 may appear somewhat ad hoc

I By contrast, spin arises naturally from Dirac’s relativistic treatment in 1928

I is spin a relativistic effect?

I However, reduction of Dirac’s equation to nonrelativistic form yields the Hamiltonian

H =
(σ · π)2

2m
− eφ =

π2

2m
+

e~
2m

B · σ − eφ 6= π2

2m
− eφ

I in this sense, spin is not a relativistic property of the electron
I on the other hand, in the nonrelativistic limit, all magnetic fields disappear. . .

I We interpret σ by associating an intrinsic angular momentum (spin) with the electron:

s = ~σ/2
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Electronic Hamiltonian Molecular Electronic Hamiltonian

Molecular Electronic Hamiltonian

I The nonrelativistic Hamiltonian for an electron in an electromagnetic field is therefore

H =
π2

2m
+

e

m
B · s− eφ, π = p + eA, p = −i~∇

I expanding π2 and assuming the Coulomb gauge ∇ · A = 0, we obtain

π2Ψ = (p + eA) · (p + eA) Ψ = p2Ψ + ep · AΨ + eA · pΨ + e2A2Ψ

= p2Ψ + e(p · A)Ψ + 2eA · pΨ + e2A2Ψ =
(
p2 + 2eA · p + e2A2

)
Ψ

I in molecules, the dominant electromagnetic contribution is from the nuclear charges:

φ = − 1
4πε0

∑
K

ZK e
rK

+ φext

I Summing over all electrons and adding pairwise Coulomb interactions, we obtain

H =
∑
i

1

2m
p2
i −

e2

4πε0

∑
Ki

ZK

riK
+

e2

4πε0

∑
i>j

r−1
ij ← zero-order Hamiltonian

+
e

m

∑
i

Ai · pi +
e

m

∑
i

Bi · si − e
∑
i

φi ← first-order Hamiltonian

+
e2

2m

∑
i

A2
i ← second-order Hamiltonian
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Electronic Hamiltonian Molecular Electronic Hamiltonian

Magnetic Perturbations

I In atomic units, the molecular Hamiltonian is given by

H = H0 +
∑
i

A(ri ) · pi︸ ︷︷ ︸
orbital paramagnetic

+
∑
i

B(ri ) · si︸ ︷︷ ︸
spin paramagnetic

−
∑
i

φ(ri ) +
1

2

∑
i

A2(ri )︸ ︷︷ ︸
diamagnetic

I There are two kinds of magnetic perturbation operators:

I the paramagnetic operator is linear and may lower or raise the energy
I the diamagnetic operator is quadratic and always raises the energy

I There are two kinds of paramagnetic operators:

I the orbital paramagnetic operator couples the field to the electron’s orbital motion
I the spin paramagnetic operator couples the field to the electron’s spin

I In the study of magnetic properties, we are interested in two types of perturbations:

I uniform external magnetic field B, with vector potential

Aext(r) =
1

2
B× r leads to Zeeman interactions

I nuclear magnetic moments MK , with vector potential

Anuc(r) = α2
∑
K

MK × rK
r3
K

leads to hyperfine interactions

where α ≈ 1/137 is the fine-structure constant
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Uniform Magnetic Fields and London Orbitals

Section 2

Uniform Magnetic Fields and London Orbitals
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Uniform Magnetic Fields and London Orbitals

Hamiltonian in a Uniform Magnetic Field

I The nonrelativistic electronic Hamiltonian (implied summation over electrons):

H = H0 + A (r) · p + B (r) · s + 1
2
A (r)2

I The vector potential of the uniform field B is given by:

B = ∇× A = const =⇒ AO(r) = 1
2
B× (r −O) = 1

2
B× rO

I note: the gauge origin O is arbitrary!

I The orbital paramagnetic interaction becomes:

AO(r) · p = 1
2
B× (r −O) · p = 1

2
B · (r −O)× p = 1

2
B · LO

where we have introduced the angular momentum relative to the gauge origin:

LO = rO × p

I The diamagnetic interaction becomes:

1
2
A2
O (r) = 1

8
(B× rO) · (B× rO) = 1

8

[
B2r2

O − (B · rO)2
]

I The electronic Hamiltonian in a uniform magnetic field depends on the gauge origin:

H = H0 +
1

2
B · LO + B · s +

1

8

[
B2r2

O − (B · rO)2
]

I as we shall see, a change of the origin is a gauge transformation
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Uniform Magnetic Fields and London Orbitals Gauge-Origin Transformations

Gauge Transformation of Schrödinger Equation

I What is the effect of a gauge transformation on the wave function?

I Consider a general gauge transformation for the electron (atomic units):

A′ = A + ∇f , φ′ = φ− ∂f

∂t

I It can be shown that this represents a unitary transformation of H − i∂/∂t:(
H′ − i

∂

∂t

)
= exp (−if )

(
H − i

∂

∂t

)
exp (if )

I In order that the Schrödinger equation is still satisfied(
H′ − i

∂

∂t

)
Ψ′ = 0 ⇐⇒

(
H − i

∂

∂t

)
Ψ = 0,

the wave function undergoes a compensating unitary transformation:

Ψ′ = exp (−if ) Ψ

I All observable properties such as the electron density are then unaffected:

ρ′ = (Ψ′)∗Ψ′ = [Ψ exp(−if )]∗[exp(−if )Ψ] = Ψ∗Ψ = ρ
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Uniform Magnetic Fields and London Orbitals Gauge-Origin Transformations

Gauge-Origin Transformations

I Different choices of origin in AO (r) = 1
2
B× (r −O) are related by gauge transformations:

AG (r) = 1
2
B× (r − G) = 1

2
B× (r −O)− 1

2
B× (G−O)

= AO (r)− AO (G) = AO (r) + ∇f , f (r) = −AO (G) · r

I The exact wave function transforms accordingly and gives gauge-invariant results:

Ψexact
G = exp [−if (r)] Ψexact

O = exp [iAO (G) · r] Ψexact
O (rapid) oscillations

I Illustration: H2 on the z axis in a magnetic field B = 0.2 a.u. in the y direction

I wave function with gauge origin at O = (0, 0, 0) (left) and G = (100, 0, 0) (right)

London orbitals: do we need them?

Example: H2 molecule, on the x-axis, in the field B = 1
10 ẑ.

A = 1
20 ẑ ⇥ r �! A0 = A + r(�A(G) · r)

 = RHF/aug-cc-pVQZ �!  0 = e�iA(G)·r 
(10)

Gauge-origin moved from 0 to G = 100ŷ.
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Uniform Magnetic Fields and London Orbitals London Orbitals

London Orbitals

I The exact wave function transforms in the following manner:

Ψexact
G = exp

[
i 1

2
B× (G−O) · r

]
Ψexact

O

I this behaviour cannot easily be modelled by combinations of standard atomic orbitals

I Let us instead build this behaviour directly into the atomic orbitals:

ωlm(rK ,B,G) = exp
[
i 1

2
B× (G− K) · r

]
χlm(rK)

I χlm(rK ) is a normal atomic orbital centred at K and with quantum numbers lm
I ωlm(rK ,B,G) is a field-dependent orbital at K with field B and gauge origin G

I Each AO now responds in a physically sound manner to an applied magnetic field

I indeed, all AOs are now correct to first order in B, for any gauge origin G
I the calculations become rigorously gauge-origin independent
I uniform (good) quality follows, independent of molecule size

I These are the London orbitals after Fritz London (1937)

I also known as GIAOs (gauge-origin independent AOs or gauge-origin including AOs)

I Question:

I are London orbitals needed in atoms?
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Uniform Magnetic Fields and London Orbitals London Orbitals

Dissociation With and Without London Orbitals

I Let us consider the FCI dissociation of H2 in a magnetic field

I full lines: with London atomic orbitals
I dashed lines: without London atomic orbitals

2 4 6 8 10

-1.0

-0.5

0.5

1.0

B = 0.0

B = 1.0

B = 2.5

I Without London orbitals, the FCI method is not size extensive in magnetic fields
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Paramagnetism and diamagnetism

Section 3

Paramagnetism and diamagnetism

Trygve Helgaker (University of Oslo) Molecules in Magnetic Fields ESQC 2019 20 / 25



Paramagnetism and diamagnetism

Paramagnetism

I Hamiltonian for a molecule in a uniform magnetic field in the z direction:

H = H0 + 1
2
BLz + Bsz + 1

8
B2(x2 + y2)

I a paramagnetic, linear dependence on the magnetic field
I a diamagnetic, quadratic dependence on the magnetic field

I The linear paramagnetic Zeeman terms are easily understood:

I the angular momenta Lz and sz generate a magnetic moment:

mz = − 1
2
Lz − sz

I this magnetic moment interacts with the field B in a dipolar fashion:

−Bmz = 1
2
BLz + Bsz

I Important consequences of the paramagnetic Zeeman terms:

I they reduce symmetry and split energy levels
I energy is raised or lowered, depending on orientation

1s

1sα

1sβ

2p 2p0

2p-1

2p+1
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Paramagnetism and diamagnetism

Diamagnetism

I Hamiltonian for a molecule in a uniform magnetic field in the z direction:

H = H0 + 1
2
BLz + Bsz + 1

8
B2(x2 + y2)

I The quadratic diamagnetic term may be understood in the following manner:

1 the field B induces a precession of the electrons with Larmor frequency B/4π
2 this precession generates an induced magnetic moment proportional to the field

charge × frequency × area = −
B

4π
π(x2 + y2)

3 this induced magnetic moment interacts with B, raising the energy quadratically

I Important consequences of the diamagnetic term:

1 it raises the energy of all systems

2 it squeezes all systems

I ground-state helium atom

I transversal size ∝ 1/
√
B

I longitudinal size ∝ 1/ log B
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Paramagnetism and diamagnetism Open-shell systems

Open-shell systems – the quadratic Zeeman effect

I For open-shell atoms, we observe the quadratic Zeeman effect

I initial energy lowering by Zeeman terms counteracted by the diamagnetic term

H = H0 + Bsz + 1
2 BLz + 1

8 B
2
(
x2 + y2

)
I Lowest states of the fluorine atom (left) and sodium atom (right) in a magnetic field

I CCSD(T) calculations in uncontracted aug-cc-pCVQZ basis (atomic units)
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Paramagnetism and diamagnetism Open-shell systems

Closed-shell diamagnetism

I In a closed-shell system, ground-state energy should increase diamagnetically:

〈0|H|0〉 = 〈0|H0|0〉+ 1
8
B2〈0|x2 + y2|0〉, 〈0|Lz |0〉 = 〈0|Sz |0〉 = 0

I Energy of benzene in a perpendicular magnetic field (atomic units):

linear magnetizability are in fact positive and large enough to
make even the average magnetizability positive !paramag-
netic". It is therefore interesting to verify via our finite-field
London-orbital approach whether this very small system is
indeed characterized by a particularly large nonlinear mag-
netic response. The geometry used for the calculations is that
optimized at the multiconfigurational SCF level in Ref. 51,
corresponding to a bond length of rBH=1.2352 Å.

For the parallel components of the magnetizability and
hypermagnetizability, we are able to obtain robust estimates
using the fitting described above, leading to the values !# =
−2.51 a.u. and X# =35.25 a.u., respectively, from aug-cc-
pVTZ calculations. The same values are obtained both with
London orbitals and any common-origin calculation that em-
ploys a gauge origin on the line passing through the B and H
atoms since in this case, due to the cylindrical symmetry, the
London orbitals make no difference.

For the perpendicular components, the estimates of the
hypermagnetizability we obtain using the above mentioned
fitting procedure are not robust, varying with the number of
data points included in the least-squares fitting and the de-
gree of the polynomial. Using 41 uniformly spaced field val-
ues in the range −0.1–0.1 a.u. and a fitting polynomial of
order 16, we arrive at reasonably converged values of !!

=7.1 a.u. and X!=−8"103 a.u. for the magnetizability and
hypermagnetizability, respectively, at the aug-cc-pVTZ level.
In Fig. 1!c", we report a plot of the aug-cc-pVTZ energy as
function of field !triangles". For comparison, we report in
Fig. 1!a" the corresponding benzene plot. As the linear re-
sponse for BH is paramagnetic, the curvature of the magnetic
field energy dependence is clearly reversed. More impor-
tantly, whereas it is evident from Fig. 1!a" that the curve for
benzene is to a very good approximation parabolic so that
the nonlinearities arise from small corrections that are not
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FIG. 1. Energy as a function of the magnetic field for different systems. Triangles represent results from finite-field calculations and solid lines are quartic
fitting polynomials. !a" Benzene !with the aug-cc-pVDZ basis" illustrates the typical case of diamagnetic quadratic dependence in response to an out-of-plane
field. !b" Cyclobutadiene !aug-cc-pVDZ" deviates from the typical case by exhibiting a nonquadratic dependence on an out-of-plane field. !c" Boron
monohydride !aug-cc-pVTZ" is an interesting case of positive magnetizability for a perpendicular field, exhibiting nonquadratic behavior. !d" Boronmono-
hydride !aug-cc-pVTZ" in a larger range of perpendicular fields, exhibiting a clearly nonperturbative behavior.
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Paramagnetism and diamagnetism Closed-shell systems

Closed-shell paramagnetism

I Nevertheless, closed-shell paramagnetic molecules such as C20 do exist
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I Paramagnetism results from Zeeman coupling of ground and excited states in the field

I in the absence of coupling, the diamagnetic diabatic ground and excited states cross
I the Zeeman interaction generates adiabatic states with an avoided crossing
I a sufficiently strong coupling creates a double minimum (cmp. Renner–Teller)
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