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ABSTRACT

The development and status of the second order MCSCF program pack-
age SIRIUS/ABACUS is briefly reviewed. A few applications illustrating the
performance for calculations of electronic structures, reactions and spectra of
molecules are discussed.

1. INTRODUCTION

The last decade has seen a rapid development of theory and
code implementation of electronic structure methods in general
and of methods for solving the many-body problem for molecules
in particular. Although this development also today constitutes
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an ever ongoing process, one can safely say that the theoretical
endeavor in electronic structure methodology in the last few
years has taken new turns and is now more directed towards
accurate and efficient calculations of molecular properties. Par-
ticular emphasis has been put on the use of analytical response
theory that makes the inherent accuracy of the electronic struc-
ture methods directly « transferable » to a number of molecular
properties. This goes for many of the variational as well as per-
turbational methods in operation today, such as self-consistent
field, configuration interaction, multiconfiguration self-consistent
field, many-body perturbation theory, and coupled cluster
methods (SCF, CI, MCSCEF, MBPT, and C(!). One of the more
important properties in this respect are molecular derivatives,
which form the underlying entities for the calculation of
molecular conformations and reactions.

New formulations of response function theory, in conjunc-
tion with unitary parametrization of the wave function including
also its time dependence, and the full use of second quantization
has lead to a number of efficient approaches and simplifications
that have been utilized for large scale calculations of molecular
properties, as will be briefly sketched below. We have developed
an MCSCF (Multi-Configurational Self-Consistent Field) method
for this purpose. The main MCSCFEF code block implements a
mathematically well-defined procedure for wave function
optimizations which is analytically transferable to a number of
properties as desired. This means that both computationally and
formally the structure in this program part is similar to those for
the different response property parts, in some cases the opera-
tions are identical. Being fully variational (in both configura-
tional and orbital rotational parameters) the MCSCF wave func-
tion lends itselfs very well for use as reference in static of
dynamic response property caleulations. Perhaps the most
important feature of the MCSCF model is, however, that it dis-
sociates correctly, a property which stems from its inherent self-
adjustable character that can handle a priori unknown electronic
structures. In particular the making or breaking of molecular
bonds and the description of electronie structures at transition
states constitute problematic aspects in  perturbational
approaches but are handled correctly by MCUSCF. In such cases
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there is often a sharp variation of density and wave function, the
latter containing mixture of covalent and ionic terms and near-
degeneracies of electronic configurations ete. MCSCEF thus starts
out with a correct treatment of the static part of the electronic
correlation and can gradually be enlarged to encompass the
dynamical correlation. Some very recent work has indeed been
concerned with the inclusion of a larger fraction of the dynamical
correlation in MCSCF. The flexibility of the MCSCF model is par-
ticularly important for searches on a potential hypersurface
away from equilibria, e.g. for transition states, where very little
is known a priori about conformational or electronic structures.

The attractive features of MCSCF can thus be coined as
«analytically transferable », « self-adjustable », « varational », and
« general » in terms of transition and excited states. As shown in
next paragraphs the inherent potential of MCSCF is fully utilized
in a second order formulation. On the negative side one can men-
tion lack of size-consistency, complex programming and calcula-
tions, and the fact that the non-linear optimization effectively
prohibits a lack-box implementation, which is drawback in most,
albeit not all, situations. Concerning the size-consistency problem
one finds that the MCSCF wave function behaves better than the
corresponding C1 due to the orbital reoptimization, and one
should also qualify its relative merits in this respect by the fact
that at this time no computational feasible method is available
that treats correctly both dissociation and size-consistency.

In this talk T will briefly review features and performances
of a Multi-Configurational Self-Consistent Field method for
calculating electronic structures, spectra, and reactions. The pro-
ject started late 1983, and has resulted in a number of investiga-
tions published in the literature ; some key references are given
in the reference list /1-32/. The program is parametrized for com-
plete active (CAS) and restricted active (RAS) space wave func-
tions using either a determinant based or a CSF (configuration
state function) based many-electron basis. The program package
contains four main modules :

i) SIRIUS : A direct second order MCSCEF program. It is
equipped with norm extended (NEO) and Newton-Raphson
(NR) optimization routines using the trust region concept for
guaranteed convergence, and also several auxiliary algo-
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rithms for efficient optimization. It also includes a module
for MC self-consistent reaction field calculations for a
molecule or a cluster of molecules in a dielectric cavity.

ii) ABACUS : a second order property program for molecular
gradients and Hessians, polarizabilities, IR intensities and
frequencies. It is equipped with algorithms for searches of
equilibrium and stationary points. Recently also incorporat-
ing routines for solving the equations of motions and auto-
correlation functions for time development of ground and
excited states.

iiiy RESPONS : solves large eigenvalue equations and sets of
linear equations for the linear time-dependent response func-
tions of an MCSCF reference state. Dipole excitation spectra,
dispersion coefficients, static and dynamic polarizabilities are
obtained.

iv) WESTA : A program for transition properties and spectra
obtained by separate state MCSCF optimization. It includes
static and dynamic non-adiabatic (vibronic) coupling, X-ray
and VUV spectra, and also core electron shake-up spectra.
The programs interface at present to three programs for

calculation of one- and two-electron integrals : MOLECULE [*],

HERMIT [**] and STOCOS [*], the two former ones using multi-

center gaussian functions, the latter using one-center oscillating

type (Slater + trigonometric) type functions.

2. SIRIUS

The primary MCSCF program for wave functions optimiza-
tions reviewed in this article can be attributed with three main
labels ; 1) second order ; ii) direct ; and iii) step-restricted. It is
second order because it is based on the second-order Taylor
expansion of the electronic energy in all variational parameters,
viz. configuration coefficients and orbital rotations, which in
turn imply quadratic convergence. It is direct because it gives
the solution of an MCSCF eigenvalue equation by means of suc-
cessive linear transformations where the full norm-extended
Hessian is multiplied by a trial vector without explicitly con-
structing the Hessian. This makes possible applications to large
wave functions for which the Hessian would be prohibitly large

152



for an explicit construction. The program is step-restricted
because it performs a controlled walk on the energy hypersurface
in which each step is restricted to a closed region, a hypersphere.
The size of the latter is updated such that convergence is guaran-
teed for the lowest state of a given symmetry, and most often
well-behaved for the lowest excited states. Thus the novel feature
with the present MCSCF method, as implemented in the
SIRIUS program was that it unifies two important develop-
ments in computational quantum chemistry; the unitarily
parametrized and density matrix driven second order MCSCF
and the « CSF'» (GUGA) or determinant based formulations for
handling long configurational expansions. This makes it possible
to handle large, and therefore accurate wave funections in a
second order manner. The latter feature gives the possibility to
obtain sharp and controllable convergence in relatively few num-
ber of iterations on the energy hypersurface, however, more
important is that it offers analytical as well as computational
advantages for property calculations, such as the molecular
Hessians and other second order properties. A realization of this
has been made in the ABACUS and RESPONS post-programs
briefly commented below.

The following convergence characteristics are associated to
the program
a) Guaranteed ground state convergence.
b) Reliable convergence for the lowest excited states.
¢) Guaranteed correct state convergence (correct Hessian index).
d) Sharp convergence (for properties).
e) Root flipping problem avoided.
f) Core hole state convergence without variational collapse.
The basic assumption behind the MCSCEF method is that of
a spin-independent, Born-Oppenheimer Hamiltonian

H a5y ErskmEr& + %Em!u(rs | t'u)ém!u (] )

where K, and ¢, are the spin-less one- and two-electron excita-
tion operators. The MCSCF wave functions is parametrized as

Pl Q) = exp(—R)(Zc; | O; > (2)



where ® = Z,..x.(f,—E,) is an asymmetric operator for
orthogonal rotations of orbitals, and

|19; > = P[] df |vac> (3)
k=1N

19, > = [] dl& |vac> (4)
k=N

denote configurational State Function (CSF) or Slater Determi-
nant (SD) many-electron basis sets. The CSF:s thus constitute a
spin-adapted SD basis. Each SD is constructed from a finite set
of orthonormal orbitals @.(g;¢), Molecular Orbitals (MO:s),
which are expanded as linear combinations of atomic functions
(LCAQ) centered on the nuclei at Q :

0lg:Q) =% dilc(q;Q) (5)

The wave function expansion is thus (CSIF)-SD-MO-LCAO
with typical dimensions : CSF : 10* — 10°, 8D : 10° — 10% x :

10 — 10", or larger. The MCSCF wave function is obtained by
optimizing the energy functional (suppressing Q-dependence)
Bk, e) = Bla) = <2I10> 145 — | W) >, 2 = (¢,x). For the

< 0|0 =
stationary point X the energy gradient is zero and the energy

Hessian has the correct index (0 for ground state, 1 for first
excited state, ete.)

The wave function optimization can be thought of in two
levels : i) a macro-iteration walk on the parameter surface
towards the desired stationary point, and ii) the micro-iteration
solution of a specific eigenvector-eigenvalue probleme which
gives the optimal step for each macro-iteration. In order to take
a macro step the energy surface is Taylor expanded around a
given point

SH*(F) = 7'7 + 37"HT = SE@) + R() (©)
the r.h.s. of which is divided into an exact energy difference for
the step and a remainder energy. Only norm extended steps are
considered (NEO) and the norm related variable is therefore pro-
jected out : g = Pg, H = PHP, P = I — ¥x". Optimization of
the quadratic function 8E* gives

y¥ = —H' 'y (7)



a straight Newton step, or

ght= —(H - V)Tl (8)

a restricted, level-shifted step. Considering instead the eigenvalue
equation

PLPz = P)z (9)

where PL is the projected and level-shifted Hessian

"L = H' + B" + ") (10)

one can find a step based on the eigenvector Pz

b7 = (B@""z) " 'PPz (11)

that is equivalent to the restricted step

7¢ = —(H' - )7y (12)

i.e. to a level-shifted Newton step. This scheme may be
implemented such that it guarantees that the level shift always
will lie in the correct interval. Solving for the restricted step
(eq. (8)) as a set of linear equations would require calculations of
the lowest cigenvalues of the Hessian beforehand in order to find
the valid range for the level shift, while in the NEO approach the
number of negative eigenvalues of the projected Hessian H' is
monitored without ever explicitly determining any of its eigen-
values. With NEO one therefore automatically finds a level shift
so that an optimal step can be taken. A non-linear algorithm has
been set up to give a level shift such that the step is optimal for
a trust region [*], i.e. a region where second order steps can be
trusted. If the stationary point is outside the trust region a NEO
step, L.e. solution of eq. (9), is taken with a level shift optimal for
the current trust radius: if the stationary point is inside the
trust radius, i.e. if the calculation has reached the local quadratic
energy region, strict Newton-Raphson step(s) are taken towards
the stationary point. A trust region update algorithm based on
the ratio of predicted and actual energy changes is implemented
such that convergence is guaranteed.



A typical second order MCSCF calculation thus proceeds by
performing NEO type iteration steps on the global part of the
energy hypersurface, while in the local energy region, where the
surface is nearly quadratic and where the stationary point resides
within the trust radius, a straight NR step is taken. For inner
shell states one finds particularly nice applications of this proce-
dure. These states are embedded in a continuum with an a priori
unknown number of negative Hessian eigenvalues, and are sub-
ject to variational collapse. Full optimization can, however, be
achieved by first carrying out an intermediate NEO optimization
where the singly occupied core orbital is frozen which carries the
expansion point to the local energy region, and then followed by
a full optimization NR step without monitoring the Hessian
index.

The step controlled pure second order character is one corner
stone in the SIRTUS MCSCF program, the other novel feature in
the program is its direct character, i.e. that the optimization step
is solved for iteratively by evaluating linear transformations on
trial vectors without explicitely constructing the generating
matrix, in casu, the Hessian. We illustrate this step by splitting
up the trial and updated vectors and the transformation matrices
in orbital (0) and configurational (¢) parts :

( G° ) ( DLn'. [lLe:o ) ( Er. )

foid = [:’-Luc BLuu Eu ( 1 3)
We can view direct second order MCSCF as generalization to

cases where

Lo L% = (14)
IjL“"‘ = BL B ﬂ'L”"‘ = () ( 1 r}
[iLm: i [iL 0 — |3Luc: = 0 ( 1 6 )

i.e. to first order MCSCF, direct configuration interaction, and to
quadratic Hartree-Fock, respectively. In fact the program can be
used for quadratically convergent step-restricted Hartree-Fock
calculations, and is in this respect equivalent to the QC SCF
method (quadratically convergent SCI) of Backskay [*"] but with
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the additional benefit of restricted step control. This direct
(direct in terms of iterative solutions of the eigenvalue problem)
HF has now been merged [**] with the direct (direct in terms of
integral handling) SCF method of Almlif and coworkers [**]. The
MCSCF program can also be used straightforwardly for large
scale direct CI calculations.

It is instructive to expand the above short form for the
linear transformation somewhat for the different blocks :

ce:y. PLSh, = 2(<®' | A | B> — Eb) +
J

unea

B - ])[ﬂs(z .‘IJJ)J) +: 9;‘(2 ’3,-;!{;')] (17a)
i j

oc z ﬁL(;?JbJ = Tgptr + (B & 2)9 .-rrZ cjbj { 1 ?b)
J J
c"-’z BL:‘:(rbm = g{d)t | F I "MO) it (B - 2)61' Z gsrbsr(l'?c)
res rea
a0 — = l
OG'.Z BLSr.ﬂIbH} bl g.\’r + § Z (bﬁ' gfs - bsl ghﬂ) (1 7d)
1>u !

In these equations i,j.. are configurational indices, rstu..
orbital indices. One can observe that only gradient like expres-
sions appear and need to be stored, while Hessian elements do
not appear explicitly, but are just multiplied onto the trial vec-
tor elements. The equations (17¢) and (17d) thus express a direct
operation with one-index transformed integrals. while equation
(17D) represents a transition density matrix direct CI construe-
tion. The recognition of a one-index transformed Hamiltonian
H=1[Z.,b,(E, — E,),H] in the treatment of the coupling
block [*] is a key point in the formulation of a second order
MCSCEF, in faet it is indispensable for a direct handling of the
coupling block. In equation (17¢) we note the appearance of “g,,
i.e. an orbital gradient evaluated from a second order transition
density matrix. All expressions above are expanded and coded in
terms of normal and transition 1- and 2- electron density
matrices, normal l-index transformed integrals and normal and
one-index transformed and transition Fock matrices. All quan-
tities are further subdivided according to if the orbital indices
fall in the inactive, active or secondary categories, and in com-
binations of these categories.
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As illustrated by eq:s (3) and (4) the MCSCF wave function
is parametrized in both determinants and configuration state
functions (CSF:s). The determinant expansions are typically 2 to
4 times longer than the CSF expansions, but make it possible to
construct density matrices and sigma vectors more efficiently
using vector operations. In some circumstances it is still advan-
tageous to keep a purely spin-adapted CSF expansion, and the
present version of the program therefore contains routines that
make it possible to flip between determinant and CSF expansions
in different parts of the program. The determinant expansion
also makes the wave functions more readily manipulated in
terms of annihilator or creator operations needed for matrix ele-
ment calculations for interpreting various spectroscopic pro-
cesses, see further section V.

The MCSCF wave functions are constructed in terms of
Restricted Active Space (RAS) or of Complete Active
Space (CAS) expansions. Despite this notion the RAS type wave
function, introduced in CI by Olsen et al. [*'], gives a possibility
to obtain a major portion of the dynamic correlation energy,
which is hard to reach with CAS expansions for all but the
smallest one-particle basis sets, since the CAS wave function
grows very rapidly with the number of active orbitals. The
CAS wave functions are characterized by an orbital division into
inactive, active and secondary spaces, which are doubly, frac-
tionally and non-occupied, respectively. The inactive orbitals are
optimized but not correlated; the active orbitals constitute the
space for all possible electronic distributions that fulfill space and
spin (for USF:s) requirements, and are thus both correlated and
optimized. In the RAS wave function the active space is further
subdivided into three spaces, only one of which, RAS2, retains a
complete character ; the RASI space is specified by maximum
number of holes, while RAS3 is specified by a maximum number
of particles. The distribution of electrons in the RAS2 space is
then determined by the conservation of the total number of
active (correlated) electrons in the system. The choice of orbital
division and also starting orbitals can be made by precalculations
with MP2, CI or iterative natural orbitals CI (INO-CI) routines.
The optimization of orbitals with small occupation numbers in
the RAS3 space calls for natural or pseudo-natural transforma-
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tions between iterations. Still, convergence can be slow in these
cases, and this performance calls for some future improvements.
It should be noted that RAS SCF has also been implemented for
first order MCSCF in CSF basis by Malmquist et al. [*7].

The program is also equipped with auxiliary algorithms to
speed up convergence. These can be summarized as :

a) Improved start guesses for orbitals and wave functions given
by HF, MP2, CI or INO-CI initial calculations.

b) Orbital absorption steps for fixed CT vectors.

¢) A split Davidson algorithm.

d) Optimal orbital trial vectors.

e) Transform CI vector according to natural (CAS) or pseudo-
natural orbitals (RAS) in between macro iterations.

) Explicit  construction of important parts of the
CI Hamiltonian matrix to generate better trial vectors for the
Davidson-Liu algorithm,

Some of the main data from a large CAS calculation using
features a) to ¢) are recapitulated in Table 1. We find that a full

TABLE 1

Convergence characteristics for large MOSCF calculation of H.0.
& — B is the difference in atomic units
between the total energy at the presenl step and al CONVErgence.
The figure in parentheses denote the number of CSF
and orbital trial vectors in each macroiteration.
Deltails of calculation are given in ref. 1.

Maecroiteration E — Eeow step length
] 0.044 814 647 0 (2.2) 0.2094
2 0.000 886 900 8 (3,3) 3401072
: 0.000 000 361 7 (7,6) 1.90 1073
4 0.0

MCSCEF caleulation requires only 12 direct sigma type operations,
which is only slightly larger than the 9 iterations that the corres-
ponding pure CI with the same wave function requires. With the
use of feature f) (not yet applied) we expect to cut the number
of sigma operations by a factor of two, in both the CI and the
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MCSCF. For large orbital spaces also the number of integral
transformations corresponding to the absorption steps (different
transformation levels for different absorption levels) should be
considered and especially the second-order integral transforma-
tion at each macro iteration will form a bottleneck. However,
even if a second order integral transformation is more expensive
than the corresponding first order one, the computational cost is
substantially cut down with the number of macro iterations by
using the potential of the auxiliary algorithms in second order
MCSCF optimization, as is demonstrated by the few, here 3,
macro iteration steps in the example of Table 1.

Based on the MCSCEF method deseribed above, we have
recently worked out a new approach for studying solvent effects ;
the multiconfigurational self-consistent reaction-field method,
MCSCRF ['"]. In this approach the atom, molecule or super-
molecule is assumed to be surrounded by a homogeneous con-
tinuous medium described by its macroscopice dielectric constant.
The MCSCF wave function for the solute molecule is fully
optimized with respect to all variational parameters in the
presence of the polarizable medium ; the optimization retains a
pure second order character even with this interaction taken into
account. A general algorithm for solvent integrals in terms of
Hermite type Gaussian functions was developed, which allows for
an expansion of the solvent multipole interaction to any order.
Applications have so far concerned studies of electronic spectra
of solvated species [***°].

The present MCSCF program has been used in a broad
variety of contexts for calculation of electronic structures, spec-
tra and reactions, for systems of sizes ranging from Li~ over
cyclobutadiene and cytosine to molecular clusters in solution.
The important function of the SIRIUS program is being the
main program for the different property programs. These will be,
very briefly, reviewed below.

3. ABACUS
(leometry optimization using molecular gradient or gradient

and Hessian techniques constitutes an area in quantum
chemistry on which much methodological development has been
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focussed lately, and some programs have already been routinely
used in this context. There were several motivations for the
development of an MCSCF approach to the calculation of
molecular gradients, Hessians and potential energy searches. One
is the correct digsociation feature built into MCSCF, another
stems from the fully variational character of the MCSCF wave
function making it particularly suitable for analytical response
theory. The use of second order MCSCF has further the advan-
tage that both formally and computationally the various proper-
ties, time-dependent and time-independent, can be formulated
by similar means. It has been possible to identify the formal
analogies of external and internal perturbations, for example the
effect on the electronic (MCOSCF) wave functions of an electric
field and that of an internal perturbation from a nuclear dis-
placement. The use of response theory then makes it possible to
simultaneously monitor both the static and dynamic responses of
such perturbations. Another example of this is that the direct
techniques developed for solving large linear equations in wave
function optimization can be utilized for the various properties
as well, making such calculations applicable for wave functions
with a very large number of parameters, which previously only
was applicable for energy optimizations. In order to illustrate
this point. we consider a molecular system as a function of a
static electric field € and the nuclear coordinates x. We express
the first and second order properties in terms of derivatives of
the MCSCF energy functional W(e, x) with respect to € and x.
Differentiation with respect to the electric field is denoted by m
and with respect to the nuclear coordinates by n :

H;mn (E, X} = d::r-{-n I’V (E. K) Ifll de” dx" {18)
The first order properties are then given by
W' = E' (dipole moment) (19a)

W = E (molecular gradient) (195)
g

while the second-order properties are expressed as
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'[__ 20 — E:Z(} + R2ll i E:Z{} oy Fl(i (;—I I‘nll}
(polarizabilities) (20a)

I:_V’II - E” + _ﬁ:]l — El'll = FII}G—'I. Frl'll
(dipole derivatives) (200)

H;I]:i — Erl_l‘.! + _H(I:Z . E(IZ — FIU (;—l F!(}l
(molecular Hessian)  (20¢)
where the arguments € = 0 and x = x, for the unperturbed

system have been dropped for convenience. The notation in these
expressions define

Em.'u =8 = 01 Hmn | U > [21{1)
o= < () | [fﬁ', f:?mn] | 0> (21b)
G = <0|[P. [T, 1|0 > (21¢)

where |0 > is the MCSCF state for the unperturbed system, A
and ™" are the ordinary or the m.n times differentiated
Hamiltonian and 7 the MOSCF orbital- and state-rotation
operators. Note that no differentiation of the electronic
Hessian enters these equations. The first-order properties contain
static Hellmann-Feynman like terms whereas the second-order
properties contain both static and relaxation terms (E** = 0
though). The important point here is that the relaxation part can
simply be written as R = L, R = R F" = RV FY,

2 . .
and R” = L% F% respectively, where L7 and L% are solution
vectors to the response equations GL' = —F! and GAL" =

— F”" for the electrical and geometrical perturbations, respec-
tively. These are identical to the Newton-Raphson equations
solved in the eleetronic MCSCE step, only the electronic MCSCF
gradient is replaced by gradient expressions for the perturbation
F.

The simple and efficient formulation of response property
calculations using large and therefore accurate wave functions
stems from the use in equations (21) of a second-quantized, field
and geometry dependent Hamiltonian
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Z [h(}ﬂf(} + ELI() II(J(X}]E

i e Pq

+3 ngqli” & ,,E,, —§,B,] (22)

Here &, g and M denote the one- and two-electron integrals
and dipole integrals, respectively. All the field and geometry
dependencies are isolated to these integrals, while expectation
values of the creation and annihilation operators contained in H
are preserved at any geometry. The results of this is that the
geometry dependence becomes independent of the particular
kind of wave funection that is used and that standard response
theory can be applied as discussed above. The formulation of this
Hamiltonian is made possible by extending the reference MCSCF
state to other geometries by means of using symmetrically
orthogonalized orbitals

v, (X) = Z [872],,, (X) &, (X) (23)

where 8, (X) = < E,(X)]| Eq (X) > is the overlap of the original
orbitals at X, with the unmodified molecular orbitals at
geometry X. The non-differentiated Hamiltonian then contains
integrals over unmodified MO:s, while geometry differentiation of
the Hamiltonian, needed in the response equations is achieved by
a corresponding differentiation of the integrals carried out by a
series of one-index tranformations using the differentiated S as
the transforming matrix. This procedure can be extended to
higher order derivatives [**].

With the molecular gradient and Hessian at hand a broad
range of applications is opened. Geometry minimizations are now
standard and implemented in many quantum chemistry
programs and will not be commented on here. Finding stationary
points other than equilibrium structures (ES:s), i.e. transition
states (TS:s), is on the other hand far from routine. Firstly, the
gradient information is not sufficient to characterize the trans-
ition state. Secondly, as already mentioned, the determination of
the often complex and in most cases a priori unknown electronic
structure requires a high level electronic structure method. In
most cases neither experiments, other calculations nor intuition
can aid in designing the appropriate wave function.
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For a complex molecular surface it may become difficult to
define a trust region for which the Taylor expansion converges.
However, with the Hessian information, apart from obtaining
the index of the converged stationary point, one has the
possibility to traverse the surface from one stationary point to
another by means of a series of local expansions of the potential.
As for wave function optimization the second-order expansion
gives the possibility for trust radius optimization, and finding
equilibrium points is thus very similar to finding the optimum
wave function. For transition state searches the trust radius
algorithm in conjunction with an algorithm for determining the
gradient extremal constitutes a powerful procedure as recently
shown by Jergensen ef al.[*"]. The gradient extremal (GE) is
defined as the set of points on a potential surface for which the
gradient is an eigenvector of the Hessian ;H(X)g(X) = M(X)g(X).
The GE is very useful for potential walks since ; i) there is at
least one G connecting a TS with an ES (or two ES:s) ; ii) the
GE coincides with a normal mode at a stationary point (ES or
TS) ; iii) the GE:s are locally defined. Thus being at a stationary
point one always departs along a normal mode (eigenvector of
the Hessian), at other points the GE on the second-order surface
satisfies the equation

X(o)= —PH 'g+ av (24)

where v is the eigenvector of the mode being followed and
—-P=1-wT (25)

projects away components along v. The a parameter is chosen
such that the step length is equal to the trust radius. If the
stationary point is within the trust region a straight Newton step
is taken. Ref. ['*] reports the results of a series of transition state
searches between the three isomers of diazene, and gives a few
hints of the amount of insight that can be gained in small
molecular reactions by means of transition state searches.

With the possibility to locally expand molecular potentials
of any dimension one can also look for solutions of the Heisen-
berg’s quantum equations of motions (EOM) for molecular
rearrangement or dissociation processes, which in turn gives the
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possibility to analyze time-dependent or time-resolved
phenomena. Thus only local rather than global information is
needed to follow the time development of an electronic state e.g.
over a transition state or after an electronic transition. In the
latter case one often finds the system with high potential energy
at an @ priori unknown and often rough part of the potential. An
accompanying dissociation process leads to redistribution of
energy into internal and external degrees of freedom, which in
principle can be traced by solving the EOM. For bound poten-
tials it is possible to use the local gradient and Hessian informa-
tion to construct auto-correlation functions, which after Fourier
transformation give the multidimensional vibronic spectra
directly. The build-up of a spectrum can then be followed along
a time-resolved reaction walk. The auto-correlation function

Caplls o) = < QulR, L) | @p(RL) > (26)

describes the time evolution of the measure of overlap between
molecular electronic-vibrational wave function @y(£.f) at two dif-
ferent times. At {, there exists a prepared wave function for the
excited state @p as an eigenfunction of the initial state
Hamiltonian H, (for times prior to {,), which redefined to absorb
the electronic transition momentum operator, will evolve in time
according to the time-dependent Schridinger equation for the
final state Hamiltonian Hg. As shown by Cesar el al. [*'] it can
be solved in an EOM approach through the construction of a
vibronic propagator. For bound state potentials the auto-correla-
tion function shows oscillations with frequencies that closely
correspond to the eigenvalues of the Hessians at equilibrium
geometry of the molecular system. For unbound potentials one
can localize the time for passing a transition state or another
point, which gives the possibility to obtain a transition state
spectrum or a pico-second spectrum through e.g. a polarization
propagator. Distinct nuclear dynamic processes that oceur on
different kinds of potential energy surfaces can be treated within
a unified formalism. As a special case the auto-correlation func-
tion can be employed in conjunction with the Hessian and
gradient at selected points, especially the vertical and adiabatic
points (stationary points of initial respectively final states) in
order to calculate a vibronic profile. No sum-over-state analysis
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is required and basis set expansion for the final state eigenfunc-
tions are also avoided; the bottle-neck for constructing a
vibronic spectrum of any dimensionality lies in the calculation of
the molecular Hessian itself. The same formalism can also be
used for emission type spectra, where short lifetimes of the inter-
mediate state leads to lifetime-vibrational interference effects [**].

4. RESPONSE

Response functions describe the effect of an external or
internal perturbation on a reference state. If the perturbation is
varying with time, such as an oscillating electric field, the
response functions describe the time-dependent or equivalently
the frequency dependent response of the wave function. The sim-
plest time-dependent response function model, which describes
the response of an SCI state, is the so-called Random Phase
Approximation (RPA), also called time-dependent Hartree-Fock,
which has been used extensively in conjunction with calculation
of transition properties, spectral frequencies and moments of
atomic and molecular spectra. Response function methods have
also been derived for more sophisticated electronic wave func-
tions, such as for MCSCF [***%] and coupled cluster [*7] states but
also using perturbation theory [**]. For MCSCF states both linear
(MCLR) and non-linear response functions have been derived by
Olsen and Jorgensen [*]. They used a unitary parametrization of
the time dependence of the reference state and obtained the
response functions by applying Ehrenfest’s theorem to determine
the time development of the unitary parameters through each
order in the interaction operator. Formally the MCLR approach
leads to results that fulfill gauge invariance and sum-rules in the
limit of a complete one-electron basis. In a general form the
response function is determined from an MCLR two-component
eigenvalue equation [?] :

[(}4? ﬁ)—%[—za —L\E}](i):(g] (27)

A and B are Hessian type matrices and £ and A are metric type
matrices. In short form this can be written as the generalized
eigenvalue equations
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(B = AS®) X; =0 (28)

An iterative solution of eq. (28) requires i) linear tranforma-
- . 24 ur . .
tions with £/ and S8*/ as transformation matrices ['"] :

'u A B\{' ¥
| =\B 4|\ | w=ET (29)

{ im. ) > A Ib 1(2)
zm ] ( ‘_‘A _E ) (_’b )., m = L‘\ N h (30)

and an algorithm that determines the few lowest eigenvalues
using the linear transformations in eq. (29) and (30). Recently
Olsen et al. ['*] proposed an iterative algorithm to solve eq. (2)
which employ the pair-wise structure of the LR eigenvalue equa-
tions. In this algorithm a basis of orthonormal trial vectors is
employed on which the exact equations are expanded using only
matrix times vector operations. This procedure can be vieuwed
as a generalization of the Davidson-Liu algorithm for the sym-
metric eigenvalue problem, which was used for solving the
ordinary MCSCF eigenvalue equations (eq. (9)). The paired trial
vectors are split into orbital and CSF (or determinant) com-
ponents

K

0
b=1x]]0
0 i (31)
As for the symmetric eigenvalue equation the time consum-
ing part of the linear transformation in eq. (9) is allocated to the

direct CI type iterations and to the construction of a transition
density matrix.

For a second order property, i.e. the frequency dependent
polarizability we solve the LR equations

(B® — A, 89X, = yO (32)

where X, is the frequency of the external perturbation, X; the
solution vector, and V" the gradient type vector for the con-
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sidered perturbation. The second order property value is simply
obtained as X P,

The major advantage of the LR scheme sketched above is
thus that it gives the possibility to apply MCLR response
calculations to large wave functions with the same kind of stable
convergence as for the « ordinary » Davidson-Liu algorithm used
in the wave function optimization. The algorithm and the
analogous algorithm for solving the LR sets of linear equations
are both solely based on the two linear transformations in eq:s
(29) and (30). The feasibility of this algorithm, just as for
MCSCF, lies in the {act that the two matrices never are construc-
ted explicitly. Due to the large dimensions of 10° — 10° or larger,
it is important to reduce the number of iterations as much as
possible. This is achieved by keeping as many «important » trial
vectors in core memory as possible, and by always adding pairs
of trial vectors to the reduced space such that the reduced space
matrices maintain the paired structure of the full matrices. This
assures that the roots of the reduced equations monotonically
converges to the ones of the full MCLR eigenvalue equations,
and that complex roots are avoided in the reduced space. As for
MCSCE a slow convergence in orbital space calls for the applica-
tion of an optimal orbital trial vector algorithm. When solving
the linear equations for frequency dependent properties it is
economic to reuse trial vectors of one frequency at new frequen-
cies. These and other measures for convergence improvements
have been described in detail in the original work, ref. (18).

The present LR scheme is implemented for HF, CAS and
RAS wave functions giving the RPA and MCLR approaches. It
has been applied to several systems ['"#!***%%%] iz Li~ CH",
N, ethylene, benzene and cytosine. For smaller systems close to
full CI results are obtained with correlated wave functions that
are not prohibitly large. For larger systems even larger CAS
reference wave function sometimes fail to pick up sufficient
amounts of the dynamie electronic correlation and further exten-
sions to RAS-MCLR has been called for. The RAS scheme gives
the possibility to obtain flexible means to design wave functions
for very accurate results, in principle an open-ended convergence
towards the correct results, in practice, of course, the limitation
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in computational power and code implementation puts an effic-
tive limit. This limit has, however, not yet been fully explored.

In order to illustrate the strength of the present MCLR
approach we recapitulate and shortly discuss some of the main
results for the smallest of the above-mentioned species, namely
the static and dynamic polarizabilities of Li~. Like other alkali
atoms, lithium has a stable anion with a very low electron
affinity. Its electronic structure is commonly deseribed as a
three-body system with two highly correlated electrons circulat-
ing a positive unit charge. This evidently simple but still
remarkable electronic structure has prompted many theoretical
investigations of both conventional and unconventional charac-
ter. The polarizability is not known to date, and the caleulations
give wide spread results. The applied approaches fall into three
categories, scattering, perturbational and variational types. In
Table 2 we recapitulate some of the main results for the
polarizability of the Li ™ ion from these investigations and from
the MCLR method sketched above [*®]. Table 3 collects some

TABLE 2

Collection of resulls for static polarization of Li~

Reference Method Value(a.u.)
Lamm et al [*] close coupling 734
Moores and Norcross [*] close coupling 832
Pouchan and Bishop [*] CI 650+ — 50
Canuto et al [*] SCF(RPA) 1199
—"— SOPPA 1020
—— MP2 1130
"~ MP3 996
—"— M4 994
— CCD-PPA 780
— " COSD-PPA 539
—r— CCSDT-PPA AT
Agren et al [*] MCLR 21/2 B04.5
e MCLR 42/2 803.9
—f— Full CI 797.8
I Estimate of exact 798+ /-5
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TABLE 3

Caussian (1) and Slater (S) basis sets referved to in Table 4.

Designation basis ref.
Gl (158,9p)— <10s,6p> [57,58,59]
Gl11 (16s,10p)— < 16s,10p > [57,58,59]
GIII (163,12p 4d) — < 16s,10p,4d > [57,58,59]
S1 (10s,8p.5d 4f) — < 10s,8p,5d 41> [60,61]
Sl (15s,13p,5d) — < 158,13p,5d >
s: ne=1: exp.=4.7071,3.5,2.4803 [60]
s: ne=2: exp.=1.735/q, gq=1,12
P n=2: exp.=3.5/q q=1,12
d: see SI [60]

Stalic and dynamic (0= 0.02 a.n.)

TABLE 4

polarizabilities

of Li™ in dipole length form (a.u.).
Wavefunction Static Dynamie
Correlating number of
orbitals electrons  GI GIIT GITI SI SII GIIT
0 HSCF)  1201.79 1199.02 1198.39 1215.05 1196.10  1057.58
2s, 2p 2 450.77 457.10 622.97 636.71 625.94  781.59
2-3s, 2p £ 646.13 638.79 804.49 799.03 805.60 1216.25
2—3s,2p—3p 2 646.92 638.48 804.22 798.83 805.42 1215.37
1 —4s, 2p 4 647.85 639.35 805.54 800.25 806.77 1217.69
1—4s, 2p—3p 4 648.80 640.30 803.89 798.46 804.92 1216.09
1—4ds, 2p, 3d 4 799.27
Full CI 4 651.58 645.49 797.77 1208.1

computational results for various basis sets of different types and
sizes, and for different wave functions. The basis sets were of
gaussian, Slater, and a type that combines Slater and tri-
gonometric functions, and numerical MCSCF were performed to

calibrate the convergence of energies. Finally full CI was perfor-
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med for some of the basis sets for calibration purpose. We also
calculated the experimentally known photodetachment
threshold, and checked the results with respect to gauge
invariance and sum rules. For all these quantities we obtain
values that converge to 1 9, or better to the correct results. This
gives us the position to abstract information and trustworthy
results [***"] also for the experimentally unknown polarizability
and photodetachment spectra for this species. First of all the
static polarizability converges to 798 au, a value which we regard
to be accurate to within 19,. The f{requency dependent
polarizabilities show similar convergence behavior with respect
to wave function parameters, and rises monotonically from
®o=0 to ®w=0618 eV. The computed photodetachment
threshold. (= 0.615 eV experimentally). As seen in Table 2 the
scattering type calculations (close-coupling) agrees better with
our results than later elaborate quantum methods. It is par-
ticularly distressing that for an effective two-electron system like
Li~ the perturbational oriented CC and fourth-order MBPT
approaches give different values, which are off by more than
20 9, of the correct value. However, with an MCSCF reference
state we obtain close to the correct value for small expansions of
the wave function, e.g. the GIII basis set results in Table 3 give
polarizabilities of 622.97, 804.49, 803.89 and 797.77 for the
[2s.2p]. [2-3s,2p], [1-4s,2p] and full C1 wave functions. respec-
tively, while the corresponding wave funections comprise 4,7,321
and 1155396 determinants. We find that the RPA value is 50 9,
higher than the exact basis set results, but that inclusion of the
2s”—2p* resonance by correlating the two valence electrons with
the 2s and 2p orbitals halves the SCF value. Including an addi-
tional 3s orbital that describes the radial correlation raises this
value by a third. In fact, correlating only the two valence elec-
trons with the 2s.3s, and 2p orbital space we obtain values that
already lie within 19, of the exact basis set results. This
indicates that a pseudopotential approximation is justified for
Li~ . In order to rationalize these findings we also computed the
expectation values < r > and < r* > for different choices of
active spaces with the numerical MCSCF program. For the Har-
tree-Fock state one obtains < r > = 12.65 a.u. and < ¢* > =
88.17 au. An MCSCF expansion only including the near-
degenerate configurations contracts the electron cloud to
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<r>= 1149 au. and < r* > = 67.54 a.u. The expectation
values for the larger MCSCF expansions are stable, for the [1s-
45,2p,3d] caleulations one obtains <r > = 11.80 a.u. and
< r*> = 73.29 au. These observations provide a rationaliza-
tion for the trends of the polarizability ealculations, since the
more diffuse an electron cloud is the easier it can be polarized.

Finally, we present in fig. 1 also the computed photodetach-

Li" Pholodelachment cross seclion

e

MCLR
. APA

1 — 1 1

2 3
Enerqgy (V)

Figure 1. Photodetachment cross section of Li~ with RPA and MCLR
methods [*].

ment spectrum of Li~, taken from ref. (29). Also for this
property there have been several previous investigations,
although the deviations have not been as striking as for the
polarizability. In the language of moment theory the
polarizability is only one, namely the second moment, in a series
of moments that can be used to form the full continuous
photodetachment spectrum. This construction was achieved by
the Stieltjes imaging moment method. The results show clearly
that the spectrum has a «shape» resonance in the near con-
tinuum, the features of which vary much between the MCLR and
RPA approaches. These observations also explain the widely dif-
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ferent values for the polarizability, since this polarizability refers
to the second moment of the cross section : o = IGO ﬂ@l where
@yp is the detachment threshold. The sensit?\wf'ity of the
polarizability on the photoelectron spectrum closely above the
detachment threshold, where ® is small and cross sections are
large, thus explains also the quite different values obtained for
this property by the RPA and MCLR methods. The structured
low energy region is thus important, while the high energy region
is unimportant for the polarizability, since the detachment cross
sections become very small. The high-energy excitations make
sizable contributions for an exact fulfillment of the zeroth order
(Thomas-Reiche-Kuhn) sum rule, but thus not for the second
order sum rule., i.e. for the polarizability.

In summary, we find that MCLR forms a very attractive
approach for efficient and accurate calculations of time depend-
ent and time-independent properties and spectra. This includes
also calculations of photoelectron or photodetachment continua
and shape resonances, as illustrated above for Li~, since the
primary excitation energies and moments directly can be used to
construet the underlying moments and pseudospectra that are
required to obtain a correctly energy normalized continuum. The
MCLR program can be used as black box where the full spectrum
is obtained in one batch of calculations. The ease of MCLR
applications should thus be stressed.

=

2. WESTA

The third MCSCF post-program, WESTA, is coded for trans-
ition properties and spectra obtained from state specific
optimizations of the wave functions. The WESTA program is
divided into three parts. Part 1 evaluates generalized overlap
amplitudes entering core photoelectron shake-up spectra or spec-
tra from inverse photoemission. In part 2 X-ray transition
moments are evaluated for VUV or X-ray spectra, i.e. spectra of
processes which radiatively connect core and valence levels.
Part 3 computes first and second order non-adiabatic coupling
constants between seperately optimized MCSCF states. A
numerical procedure with high inherent accuracy has been
developed for this purpose. It has also been interfaced to an algo-
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rithm for solving the coupled channel Schridinger equation for
which the non-adiabatic coupling constants enter as the basic
input quantities. All three program units have been implemented
for CAS wave functions, lately also for RAS although so far
without any applications.

The two first parts of the program have in common that
they treat spectral processes involving core levels. In comparison
with theoretical analyses of spectra in the optical or
UV wavelength region there are several additional considerations
associated with studies of soft X-ray emission or core hole shake-
up spectra. One of these refers to the fact that the initial state
of the transition is embedded in a continuum and therefore may
be subject to variational collapse. Also, the substantial electronic
relaxation following the formation of the core hole introduces
further complications. By virtue of the equivalent core notion,
the transition takes place between two entirely different chemical
species, which implies that the optimal molecular bases used for
expanding the wave functions will be quite different for the
initial and final states. This leads to a non-orthogonality problem
in the evaluation of transition matrix elements between deter-
minantal wave functions for both states. In a Hartree-Fock
scheme this is manageable and has traditionally been solved by
means of co-factor calculations. However, for correlated wave
functions of even moderate accuracy such transition matrix
elements require a large computational effort. Previous studies of
molecular soft X-ray or core electron shake-up spectra have been
carried out by means of self-consistent field and configuration
interaction methods, and have shown that the orbital relaxation
effect is crucial and that a correlated treatment of the transition
matrix elements must always be performed separately for initial
and final states with sets of mutually non-orthogonal orbitals.
With independently optimized MO basis sets for the states
involved one may account for the relaxation of the electronic
cloud from the ASCF level and onward. However, the demand
for state-specific MO optimizations puts an effective limit to the
size of the wave functions that can be used in such calculations.
Although some attempts have been made to attack these spectra
with propagator oriented approaches, only state specific varia-
tional methods have been applied to any extent. The reason is
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the difficulty to treat the large orbital relaxation and at the
same time apply an operator manifold that contains core-valence
transfer operators. Furthermore the core electron shake-up pro-
cess is delicately dependent on the precise nature of the electron
correlation, and would require higher order propagator methods
if the unrelaxed ground state is used as reference state. On the
other hand the state specific approaches to this kind of spectra
have suffered from very costly evaluations of either the trans-
ition density matrix (soft X-ray emission) or wave function over-
lap (shake-up) when the wave functions are expanded in sets of
mutually non-orthogonal sets of orbitals, and at the same time
containing large configurational expansions. A «brute force»
caleculation of the matrix elements soon becomes prohibitive
despite the application of some efficient schemes for co-factor
calculations [***°]. Overlap of the different wave functions are
also needed to correct the transition moments for non-
orthogonality.

The procedure for evaluationg the spectral moments

X;’” ) \P}nl (N —1)14,] PO (N) > (33)
XMW= <¥e (N —1)IT|PON-1)> (34)

in the WESTA program are based on two parts; i) an applica-
tion of Malmquist’s [*'] biorthogonalization procedure; and
ii) algorithms for sorting and expanding the wave functions. This
is implemented for both CAS and RAS wave functions either
CSF or determinant based. For CSF:s the sorting and expansion
is applied to the so-called GUGA graphs and to strings of deter-
minants in the latter case. The need for these procedures stems
from the single-occupancy restriction of the core hole, obtained
by reducing the GUGA graphs (CSF':s) or restricting the RASI
space to one electron only. This restriction is needed in order to
avoid variational collapse, however, it still constitutes an
excellent approximation to the full interaction, since interacting
configurations with double core electron occupation are very
small, below 0.1 eV as we have shown with perturbation
theory [*]. Full orbital optimization can still be achieved with
the MCSCF method as shown in section II. Using these proce-
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dures we obtain timing for moment calculations that is com-
pletely negligible compared to that of the wave function
optimizations. For X-ray spectra the spectral intensities are gov-
erned by the Einstein coefficients for spontaneous emission,
which in Hartree units are given as
_ 4aE} N
W, = 32 / (35)
where ¢ is the speed of light, a refers to the fine structure con-
stant, #,; denotes the transition energy, and 7' is the transition
moment matrix element. The one-electron transition moment
operator T is expressed in second quantization as

T=% <o,lt|e;> £, (36)
pa
and the corresponding matrix elements as a trace of a property

matrix multiplied by the first order density matrix.

Ml — il 1 iR j = Q=
JU_Z {{ppltltp:;} <y |qu|wl}> _ZPgaq I).uq (‘3")

) Py ) i
where y' and W denote the total electronic wave functions for

the initial and final state of the transition. We evaluate the
transition moment either in dipole length or dipole velocity
forms. These are related as

<y VW > = (B—B)<vy|fly> (38)

An efficient algorithm for caleulating the property integrals
is given in ref. (53). The construction of the transition density
matrix follows Malmquist’s prescription” after that the wave
functions for the «reduced» core hole state wave function has
been expanded to a common «graph» used for the valence or
ground state wave funetions. Since separate MCSCF optimization
of each state leads to non-orthogonality of the total wave func-
tions and the magnitude of the transition moments may be of the
same order of magnitude as the overlap between the MCSCF
states, we have employed a symmetric orthogonalization proce-
dure, T' = S" T, to take care of this problem.

Applications have so far been carried out for some small
molecules, see for example ref. (53) for X-ray emission and
ref. (13) for shake-up spectra. Soft X-ray spectra of free
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molecules pose some unusual and interesting features because of
the combination of strict symmetry selection rules and effective,
local, selection rules that govern their intensity distributions.
Thus X-ray spectra « map » the valence electronic density of cer-
tain symmetries close to the initial state core hole. With the pre-
sent method it has been possible to explore the role of different
approximation levels from simple rules of thumb for frozen orbi-
tal one-center transition moments to the calceulation of full trans-
ition moments using relaxed and correlated wave functions for
all states involved. In the latter case gauge invariance within a
few 9, has in general been obtained. The most crucial step seems
to be that of the choice of orbitals. Due to the substantial elec-
tronic relaxation the intensities reflect a mixture of the initial
and final states and the pertinent orbitals should ideally be
evaluated separately. The ensuing non-orthoganality problem is
thus alleviated by the present method. For molecular shake-up
spectra electron correlation plays a decisive role. With large CAS
SCF expansions one obtains a fair description of low-lying inten-
sive shake up states, e.g. of first row diatomics, however,
aceurate results especially for higher lying shake-up peaks
demand a very high quality of the wave functions for initial and
final states including both static and dynamic kinds of correla-
tion.

Finally, the third part of the WESTA program contains
routines for calculation of first and second order non-adiabatic
coupling constants and for the diagonal Born-Oppenheimer (BO)
corrections. The break-down of the BO approximation is
manifested in a number collisional and spectroscopic processes,
and forms the underlying mechanism for charge transfer and for
vibronic coupling and symmetry breaking. The present algorithm
is based on numerical differentiation. The calculation of the first
and second order non-adiabatic coupling elements

i1y (0 E}l{-'}. - ‘
NP @) = <%0 15646 @ > =g, (39)
T2 0 aglPJ'
N f:; (Q ) = QKPJW: Q) | 6@2 (q: Q) o ¢=Q, (40)

is achieved by expanding the basic overlap element



K@y v) = < y(q;: @y — @) | Wil @y + ) > (41)

symmetrically over the coupling point. This leads to one order
higher accuracy than with a straight numeric differentiation,
both for first and second derivatives. The coupling constants are
then evaluated as

N(Qo) = (1/4w)4[K (Qo, 2) — K@y, )] + O7)  (42)

Nf‘fm(Qu) i (1/4.1:)*[}{;.;-(@“, x) + K_;‘J('?ns x)]
= 23{_’;] + O(a*%) (43)
T

NENQu) = “3H(@u) = IN(Qu + 3

= N (@ — )iz + O@) (44)

for the first, the symmetric and antisymmetric parts of the
second order coupling constants, respectively. Symmetric
orthogonalization is imposed on W, (¢.Q) and W¥(¢.)) which
modulates the coupling constants by a simple scheme, see
ref. (9).

Finalizing this section we briefly list a few applica-
tions [*'"?] of the non-adiabatic coupling unit of the program :
i) Caleulation of non-adiabatic coupling constants for the ion-
atom collison Na+ Li* — Na™ + Li. This investigation included
a close examination of the stability in the numerical procedure,
sensitivity to electron correlation ete. : ii) Formulation of a
diabatic model for photoionization with application to the much
debated 27 eV structure in the photoelectron spectrum of
acetylene. The first order non-adiabatic coupling constants are
used to define the diabatic electronic states which diagonalize the
nuclear kinetic operator instead of the electronic Hamiltonian. It
was found that the diabatic representation was more appropriate
than the adiabatic one for interpreting this spectrum : iii) The
dynamic vibronic coupling between the B*Y 1 and (%1 states
of CO;. Here spurious, probably symmetry forbidden, trans-
itions are observed in the photoelectron spectrum. A conjecture
was made that this is due to a vibronic coupling mechanism
between the B and C states over the antisymmetric stretch
motion. In order to prove this the vibronic spectra pertinent to
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the dynamic non-Born-Oppenheimer potentials were calculated
by solving the multichannel Schridinger equation for the B*Y *
and C*Y" ionic states, where the in-going first and second order
non-adiabatic coupling constants as well as the Born-
Oppenheimer potential surfaces were obtained from large CAS
multi-configurational self-consistent field calculations. The
results confirm the conjecture, however, although one finds
qualitatively confirmation at the CAS level, the results are very
sensitive to the computational procedure, and we envisage large
scale RAS calculations as a requisite for obtaining converged
quantitative results.

REFERENCES

['] H.J. Aa. JENSEN, and P. JORGENSEN, J. Chem. Phys., 80, (1984), 1204.
[¥] H.J. Aa. Jensen, and H. Acrex, Chem. Phys. Letters, 110, (1984), 140,
[’] J. OLsEN and P. JORGENSEN, J. Chem. Phys., 82, (1985), 3235.

[*] H.J. Aa. JenseN, and H. AcreN, Chem. Phys., 104, (1986), 229.

[*] H.J. Aa. JENSEN, P. JorcENnsEN and T.U. HELGAKER, J. Chem. Phys., 85,
(1986), 3917.

["] T.U. HeLeaker, H.J. Aa. Jensew, and P. Joraexsen, J. Chem. Phys.,
84, (1986), 6280,

[l T.U. HELgaker, J. Aumior, H.J. Aa. JExseN, and P. JoRGENSEN, .J.
Chem. Phys., 84, (1986), 6266,

[*] H.J. Aa. Jensen, and H. AGrEN, Documentation of SIRIUS, a general
purpose direct second-order MCSCF program. Theory-, Input Reference-,
and Program Reference Manuals, Technical notes 783, 784, and 785,
Institute of Quantum Chemistry, University of Uppsala.

["] H. AgreN, A. FLorEs-Riveros, and H.J. Aa. JENsEN, Phys. Rev., A34,
(1986), 4606,

[l A. FLores-Riveros, H. Acren, R. BRAMMER, and H.J. Aa. JenseN, J.
Chem. Phys., 85, (1986), 6270.

[''] HJ. Aa. JenseN, P. JoroenseN, and H. Aerewn, J. Chem. Phys., 87,
(1987), 451.

[*] H.J. Aa. JENSEN, P. JoreenseN, and T.U. HELGAKER, JJ. Am. Chem. Soc.,
109, (1987), 2895.

('] H. Acgren, and H.J. Aa. JeNsex, Chem. Phys. Letters, 137, (1987), 431.

['*] HJ. Aa. Jexsex, P. Jercensen, H. Aeren, and J. Oisex, J. Chem.
Phys., 88, (1988), 3834.

['] J. Ousex, B.O. Roos, P. JereenseN, and H.J. Aa. Jexsen, J. Chem.
Phys., 89, (1988), 2185.

['"] T.U. HELGAKER, and P. JORGENSEN, Adv. Quant. Chem., 19, (1988), 183.

[' K. Mixkerses, H. Acren, H.J. Aa. Jensen, and T.U. HELGAKER, .J.
Chem. Phys., 89, (1988), 3086.

179



[ J. Orsex, H.J. Aa. Jexsex, and . Jorcexses, J. Comp. Phys.. 74,
(1988), 265.

['] H.J. Aa. Jexsex, H. Kocen, P, Joreexses, and J. Ousex, Chem, Phys.,
119, (1988), 297.

[2] P. JorceEnseEx, H.J. Aa. JENsEN, and T.U. HELGAKER, Theor. Chim. Acta,
73. (1988), 55.

[*Y] P. Jorcexsey, H.J. Aa. JeNseN, and J. Ousex, J. Chem, Phys.. 89,
(1988). 3654.

[**] D. Norprors, N. Marrexsson, and H. Acrex, Phys. Rer. .B38. (1988).
12922,

[*] J. Orsex, AM. Saxcurz pE Meras, H.J. Aa. Jexsex, and P. JORGENSEN,
Chem. Phys. Letters, 154, (1989), 380,

[*] C. MEpiva-LLanvos, H. Acrexn, K. MixkeLsex, and H.J. Aa, Jexsex, J.
Chem. Phys., 90, (1989), 6422,

[**] H. Acrex, C. Mepina-LLanos, K. MikkerLses, and H.J. Aa. JENSEN,
Chem. Phys. Lefters, 153, (1989), 322.

[*] A. Cesar, H. Acrex, T.U. HeELcaker, H.J. Aa. Jexsex, and P. Jorcex-
SEN, in preparation.

[*] H. Agren, A. Frores-Riveros, and H.J. Aa. Jexsex, Physica Seripla,
40, (1989), 745.

[*] H. Acrexw, J. Ouses, H.J. Aa. Jensex, and P. Jorcensex, Phys. Rev.,
A40, (1989), 2265,

[2’)’] V. Carraverra, H. Acrex, H.J. Aa. Jewxsew, P. Joreenses, and
J. OLSEN, J. Phys., B22, (1989), 2133.

[* M. NarieLro, O. Vaurras, A, ExeeLyvany, and H. Agren, in manuscript.

[*] A. Cesar, H. Acrex, in preparation.

[*] H.J. Aa. Jexsen, H. Aeren and J. Ousen, P. JorceENsEN, SIRIUS a
general  purpose  direel  second  order  program, MOTECC-90, Kd.
E. CLEMENTI, Escom Science Publishers, 1990.

[¥1 J. Avmuor, USIP, nr. 74-29, University of Stockholm (1974).

[*] T. HeELcaxER, unpublished.

[*] L. CaceLLr, V. CArrevETTA, and R. Mocera, Chem. Phys., 90, (1984), 313,

[*] R. FLETCHER, practical methods of optimization, Vol. 1 (Wiley, New York,
1980).

[*] G.B Bacsgay, Chem. Phys., 61, (1980), 385.

[*] M. FEVEREISEN et al., unpublished.

[*] J. Aumuér, K. Fagerr, and K. KorseuL, J. Comp. Chem., 3, (1982), 385,

[ J. Owsex, D. Yracer, and P. Jorcexsex, Advan. Chem. Phys., 54,
(1983), 1.

[*'] J. Owsex, B.O. Roos, P. Jorcexsex, and H.J. Aa. Jexsen, J. Chem.
Phys.. 89, (1988), 2185,

[*] P. A. MaLmouist, A. Renper. and B.O. Roos, J. Phys. Chem., (1990).

[*] J. Simons, P. JorceNseN, and T.U. HeLGARER, Chem. Phys., 79, (1983),
334,

[ A. CUesar, H. Acuey, and V. Carraverrta, Phys. Rev., A40. (1989), 187.

[*] D.L. Yeacer and P. JorceNseN, Chem. Phys. Letlers, 65, (1979), 77.

[" E. DALGAARD, J. Chem. Phys., 72, (1980), 816.

[*] E. Dargaarp and H.J. Monkuorsr, Phys. Rev., A28, (1983), 1217.



[*] J. Opversukpe and P. Joraunsen, J. Chem. Phys., 66, (1977), 1541.

[*] F. Prosser, and S, HacstroMm, Ini. J. Quant. Chem., 2, (1968), 89.

[*"] H. Acren, R. ArNEBERG, J. MULLER, and R. MaxxE, Chem. Phys., 83,
(1984), 53.

[*'] P.A. MaLmquist, Int. J. Quant. Chem., 30, (1986), 479.

[*] V. Carraverra, H. Acren, and A. Cesawr, Chem. Phys. Leilers, 148,
(1988), 210.

[m] H. AcreN, A. FLorgs-Riveros, and H.J. Aa. JENSEN, Physica Scripla,
40, (1989), 745.

[**] G. Lamm, A. Szabo, and S.A. AbeLman, Phys. Rev., A17, (1978), 238,

[*®] D.L. Moores and D.W. Norcross, Phys. Rev., A10, (1974), 1646,

[*] C. Poucnan and D.M. Bisnop, Phys. Ren., A29, (1984), 1.

[*"] 8. CanuTo, W. Duch, J. GEERTSEN, F. MULLER-PLATHE, J. ODDERSHEDE,
and G.E. Scuseria, Chem. Phys. Letters, 147, (1988), 435.

[*] L. Giantoruto, R. Povant, and E. CLEMENTI, Gazz. Chim. ltal., 108,
(1978), 181.

[*] F.B. van DivaNevELDT, IBM Techn. Repl., (1971), RJ945.

[*] A.C. Fune and J.J. MaTess, Phys. Rev., A5, (1072), 2.

[*] C.F. BuneE, Phys. Rev. Lett, 44, (1980), 1450 ; C.F. BuxgE, Phys. Rev.,
A22, (1080), 1.

181



