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ABSTRACT
The dynamics of a molecule in a magnetic field is significantly different from its zero-field counterpart. One important difference in the
presence of a field is the Lorentz force acting on the nuclei, which can be decomposed as the sum of the bare nuclear Lorentz force and a
screening force due to the electrons. This screening force is calculated from the Berry curvature and can change the dynamics qualitatively.
It is therefore important to include the contributions from the Berry curvature in molecular dynamics simulations in a magnetic field. In this
work, we present a scheme for calculating the Berry curvature numerically using a finite-difference technique, addressing challenges related
to the arbitrary global phase of the wave function. The Berry curvature is calculated as a function of bond distance for H2 at the restricted
and unrestricted Hartree–Fock levels of theory and for CH+ as a function of the magnetic field strength at the restricted Hartree–Fock level
of theory. The calculations are carried out using basis sets of contracted Gaussian functions equipped with London phase factors (London
orbitals) to ensure gauge-origin invariance. In this paper, we also interpret the Berry curvature in terms of atomic charges and discuss its
convergence in basis sets with and without London phase factors. The calculation of the Berry curvature allows for its inclusion in ab initio
molecular dynamics simulations in a magnetic field.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055388

I. INTRODUCTION

In quantum chemistry and quantum mechanics more gen-
erally, the Berry phase1–5 and Berry curvature2 are prevalent
and important concepts, particularly when dealing with molecu-
lar dynamics in magnetic fields. For the purposes of this work,
we are interested in how the Berry curvature manifests itself in
molecular dynamics equations. We concern ourselves here with
Born–Oppenheimer molecular dynamics (BOMD),6,7 which is pred-
icated upon the Born–Oppenheimer approximation8 where the elec-
trons of an atomic or molecular system are assumed to respond
instantaneously to any perturbations in nuclear coordinates. The
total approximate ground-state wave function is thereby written as
a product of the electronic and nuclear wave functions, although, in
principle, the exact wave function can also be represented in prod-
uct form.9–11 When formulating BOMD in the absence of fields,
where the electronic wave function can be taken as real, the nuclear

Hamiltonian can be approximated by the sum of the nuclear kinetic
energy and a scalar potential. In this setting, the equations of motion
for the nuclei reduce to Newton’s equations, with the conserva-
tive force on each nucleus calculated as the negative gradient of the
electronic potential-energy surface.

For BOMD in a magnetic field, the situation is more compli-
cated because of the velocity-dependent forces. The electronic wave
function is generally complex, and the nuclear Born–Oppenheimer
Hamiltonian contains contributions from both magnetic and geo-
metric vector potentials. The magnetic vector potential gives rise
to the bare Lorentz force acting on the nuclei, while the geomet-
ric vector potential gives rise to the Berry force, representing the
effect of the screening of the magnetic field by the electrons in the
system.2,12–14 The total effective Lorentz force acting on the nuclei
is the sum of the bare Lorentz force and the Berry screening force.
The screening force can be large and change the dynamics qualita-
tively, making its implementation an important step toward a full
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realization of BOMD in a magnetic field, as described in a compan-
ion article to the present paper.

The present work takes a direct, finite difference approach to
the Berry curvature. The main challenge associated with calculat-
ing the Berry curvature in this way is that the global phase of the
wave function for each nuclear perturbation is, in principle, arbi-
trary. It is therefore important to have a consistent, well-justified
way of dealing with the phase. Previously, Ceresoli, Marchetti, and
Tosatti have obtained the Berry force from the Berry curvature
for H2 using a simple model electronic wave function.12 Here,
we present a general finite-difference implementation of the Berry
curvature within the software package LONDON for ab initio molec-
ular electronic-structure calculations in a finite magnetic field.15

The LONDON program uses London atomic orbitals [also known as
gauge-including atomic orbitals (GIAOs)]16–23 for the gauge-origin
invariant calculation of energies and molecular properties at vari-
ous levels of theory including Hartree–Fock theory,20,21,24 (current-)
density functional theory,25,26 full-configuration-interaction the-
ory,27,28 coupled-cluster theory,29 and linear-response theory.30

This work is organized as follows: Section II contains a deriva-
tion of the effective nuclear Hamiltonian in the presence of a mag-
netic field, along with the resulting equations of motion and the
finite difference scheme for the calculation of the Berry curva-
ture. Justification for the phase corrections used to account for the
arbitrary phase of the electronic wave function is also presented.
Section III presents Berry curvature results for H2 and CH+ at the
Hartree–Fock level of theory. For H2, comparisons are made with
the previous results of Ref. 12. Summary and future directions are
given in Section IV.

II. THEORY
We consider a joint system of nuclei and electrons. Throughout

this work, I and J serve as indices for the Nnuc nuclei, and their low-
ercase counterparts i and j will serve as indices for the Nel electrons.
We use the notations MI , ZI , and RI for the mass, atom number, and
position of nucleus I, respectively. We use ri and pi for the position
operator and momentum operator of electron i, respectively. The
vectors of collective nuclear and electronic coordinates are denoted
by R and r, respectively. The vector potential of a uniform magnetic
field B at position u is given by A(u) = 1

2 B × (u −G), where G is the
gauge origin.

A. Born–Oppenheimer approximation
We are interested in writing down the effective nuclear Hamil-

tonian within the Born–Oppenheimer approximation, beginning
from the nonrelativistic Hamiltonian of a molecular system in a
uniform magnetic field,

Hmol = Tnuc +Hel +Vnuc. (1)

Here, the nuclear kinetic energy operator is given by

Tnuc = Nnuc�
I=1

Π2
I

2MI
, ΠI = PI − ZIeA(RI), (2)

where PI = −ih@�@RI is the canonical momentum and ΠI is the
physical momentum of nucleus I, while the nuclear repulsion oper-
ator is given by

Vnuc = Nnuc�
I>J=1

ZIZJe2

4πε0�RI − RJ � , (3)

where e is the elementary charge and ε0 is the vacuum permittivity.
The electronic Hamiltonian is given by

Hel = 1
2me

Nel�
i=1
(pi + eA(ri))2 + Nel�

i>j=1

e2

4πε0�ri − rj�
− Nel�

i=1

Nnuc�
I=1

ZIe2

4πε0�ri − RI � . (4)

The molecular wave function satisfies the time-dependent
Schrödinger equation

Hmol�Ψ� = i�h @

@t
�Ψ�. (5)

Staying within the Born–Oppenheimer approximation, we write the
molecular wave function as a product of a time-dependent nuclear
wave function ψ(R, t) and an electronic wave function ϕ(r; R) that
is time independent as follows:

Ψ(R, r, t) = ψ(R, t)ϕ(r; R). (6)

The relevant configurations R where the nuclear wave function
is concentrated evolve in time, but the electronic wave function
formally does not. We assume that the electronic wave function
is obtained at each nuclear configuration R by solving the time-
independent electronic Schrödinger equation in some exact or
approximate manner such that

UBO(R) = �ϕ�Hel�ϕ�, (7)

and we wish to solve the molecular Schrödinger equation (5) approx-
imately by inserting the product form of Eq. (6) and projecting the
resulting equation from the left by the electronic wave function as
follow:

�ϕ�Hmol�ψϕ� = i�h�ϕ� @
@t
�ψϕ�. (8)

By constructing an effective nuclear Hamiltonian H such that

H�ψ� = �ϕ�Tnuc +Hel�ψϕ�, (9)

we may determine the Born–Oppenheimer nuclear wave function
from the effective nuclear Schrödinger equation

H�ψ� = i�h @

@t
�ψ�. (10)

Within the Born–Oppenheimer approximation, all time dependence
of the molecular system is determined using the nuclear Schrödinger
equation (10). Loosely speaking, the electronic state adjusts instan-
taneously to the motion of the nuclei.
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B. Geometric vector and scalar potentials
To determine the Born–Oppenheimer nuclear Hamiltonian H

from Eq. (9), we consider first the projection of the squared kinetic
momentum of nucleus I on the electronic wave function. Projecting
against the electronic state, we obtain

�ϕ�Π2
I �ψϕ� = �ϕ�[PI − ZIA(RI)]2�ψϕ�

= �ϕ�ϕP2
I ψ� + 2�ϕ�PIψPIϕ� + �ϕ�ψP2

I ϕ�
− �ϕ�ZIPI ⋅A(RI)�ψϕ� − 2�ϕ�ZIA(RI)�ϕPIψ�
− 2�ϕ�ZIA(RI)�ψPIϕ� + �ϕ�Z2

I A(RI)2�ψϕ�
= {[PI − ZIA(RI)]2 + 2�ϕ�PIϕ� ⋅ [PI − ZIA(RI)]
+ �ϕ�P2

I ϕ�}�ψ�, (11)

which can be written as

�ϕ�Π2
I �ψϕ� = �Π2

I + 2χI ⋅ΠI +Λ��ψ�, (12)

where we have introduced the geometric vector and scalar potentials,
respectively, as follows:

χI = �ϕ�PI �ϕ�, (13)

ΛI = �ϕ�P2
I �ϕ�. (14)

The geometric vector potential is also known as the Berry poten-
tial or Berry connection. The application of the momentum operator
PI = −ih∇I to �ϕ�ϕ� ≡ 1 gives

PI�ϕ�ϕ� = −�PIϕ�ϕ� + �ϕ�PIϕ� = 0. (15)

Hence, it follows that the geometric vector potential is real-valued,

χI = �ϕ�PIϕ� = �PIϕ�ϕ� = �ϕ�PIϕ�∗ = χ∗I . (16)

Next, we observe that

PI ⋅ χI = −�PIϕ�PIϕ� + �ϕ�P2
I ϕ�. (17)

Introducing
�I = �PIϕ�PIϕ� = �∗I , (18)

we find that the scalar potential may be decomposed into real and
imaginary parts as

ΛI = �I + PI ⋅ χI . (19)

To express Eq. (12) in a more convenient form, we introduce an
effective nuclear physical momentum

ΠI = ΠI + χI= PI − ZIeA(RI) + χI (20)

and also the geometric scalar potential

�I = �I − χ2
I (21)

and obtain the following projected squared momentum operator

�ϕ�Π2
I �ψϕ� = �Π2

I + �I��ψ�. (22)

By introducing the resolution of identity in Eq. (18), we find that the
geometric scalar potential is non-negative and may be written as

�I =�
p≠0
��ϕp�PI �ϕ��2 ≥ 0, (23)

where the summation is over all excited states. This quantity appears
in the diagonal Born–Oppenheimer correction (DBOC) as follows:

UDBOC =�
I

�h2

2MI
�I . (24)

C. Born–Oppenheimer nuclear Schrödinger equation
Returning to the Schrödinger equation in Eq. (10), we find that

it may be written in the form

H�ψ� = (T +U)�ψ� = i�h @

@t
�ψ� (25)

in terms of the kinetic- and potential-energy operators

T = Nnuc�
I=1

1
2MI

Π2
I , (26)

U = UBO + Nnuc�
I=1

1
2MI

�I +Vnuc. (27)

We note that all quantities entering the Hamiltonian depend on the
nuclear coordinates R, including the momentum operators.

The mass-dependent DBOC contribution to the potential is
normally neglected, but in a few cases, it has been calculated as a
nonadiabatic correction to the potential-energy surface.31–33 In these
cases, the wave function has been real so that the geometric vec-
tor potential vanishes and �I = �I . The correction is expected to
be small and have a negligible impact on molecular dynamics in
regions where the Born–Oppenheimer approximation is valid. How-
ever, it is, in general, more important to include than in the field-free
case, especially for strong fields and/or dynamics far from equilib-
rium.13 We finally note that the Born–Oppenheimer approximation
is usually taken to mean that all matrix elements that couple differ-
ent electronic states are neglected; since the DBOC arises from such
couplings [Eq. (23)], its inclusion is normally thought of as going
beyond the Born–Oppenheimer approximation.

D. Geometric gauge transformations
The effective nuclear Hamiltonian H = T +U given in

Eqs. (25)–(27) depends on several expectation values over
the geometry-dependent electronic wave function—namely, the
Born–Oppenheimer potential UBO(R), the geometric vector poten-
tial χI(R), and the geometric scalar potential �I(R), whose geome-
try dependence arises from the parametric dependence of the elec-
tronic wave function on the nuclear coordinates. Since the electronic
wave function at each geometry is determined by solving the elec-
tronic Schrödinger equation, it is (in the absence of degeneracies)
uniquely determined up to a geometry-dependent phase factor. It
is therefore important to establish the invariance of the nuclear
Schrödinger equation to a geometry-dependent gauge transforma-
tion of the electronic wave function.
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Consider the following geometry-dependent gauge transforma-
tion of the electronic wave function:

�ϕ′� = e−iF(R)��h�ϕ�, (28)

where the gauge function F is a real-valued differentiable function
of the nuclear coordinates R. The corresponding gauge-transformed
matrix elements entering the nuclear Hamiltonian H = T +U are

U′BO(R) = UBO(R), (29)

χ′I(R) = χI(R) −∇IF(R), (30)

�′I(R) = �I(R). (31)

The invariance of UBO(R) follows since Hel in Eq. (7) does not dif-
ferentiate with respect to the nuclear coordinates. To determine the
gauge transformations of χI(R) in Eq. (13) and of �I(R) in Eq. (23),
we note that

PI �ϕ′� = e−iF(R)��h(PI �ϕ� − �ϕ�∇IF(R)), (32)

which, upon projection by �ϕ′� and �ϕ′p�, respectively, followed by
the use of orthonormality �ϕ�ϕ� = 1 and �ϕp�ϕ� = 0, gives Eqs. (30)
and (31).

Using these results, we find that the nuclear momentum opera-
tor transforms as

Π′I = ΠI −∇IF(R)
= eiF(R)��h ΠI e−iF(R)��h (33)

and hence that the operator of the time-dependent
Born–Oppenheimer Schrödinger equation transforms as

H′ − i�h @

@t
= eiF(R)��h�H − i�h @

@t
�e−iF(R)��h, (34)

whether or not the DBOC is included in the Hamiltonian. This gauge
transformation may be compensated for by a unitary transformation
of the nuclear wave function

�ψ′� = eiF(R)��h�ψ� (35)

and hence does not affect any observable quantities if the variational
space is sufficiently flexible to accommodate such transformations.

In passing, we note that, while a geometry-dependent gauge
transformation can change the local behavior of the Berry connec-
tion χI(R), there is an invariant phase along any closed loop C,

ζ = �
C

χ(R) ⋅ dR =�
I
�

C
χI(R) ⋅ dRI , (36)

known as the Berry phase.1 Among the many contexts where this
quantity arises is the calculation of magnetic properties, such as
rotational g factors.34

E. Magnetic gauge transformations
Consider now a gauge transformation of the external magnetic

vector potential
Ã(u) = A(u) +∇ f (u) (37)

and the corresponding gauge-transformed nuclear and electronic
wave functions

�ϕ̃� = �Nel�
i=1

e−ie f (ri)��h��ϕ�, (38)

�ψ̃� = �Nnuc�
I=1

eiZI e f (RI)��h��ψ�. (39)

In this case, all electronic expectation values entering the
nuclear Hamiltonian, including the geometric vector potential, are
unaffected,

ŨBO(R) = UBO(R), (40)
χ̃I(R) = χI(R), (41)

�̃I(R) = �I(R), (42)

while the nuclear momenta transform as

Π̃I = ΠI − ZIe∇I f (RI)
= eiZI e f (RI)��h ΠI e−iZI e f (RI)��h (43)

and the Hamiltonian becomes

H̃ − i�h @

@t
= �Nnuc�

I=1
eiZI e f (RI)��h��H − i�h @

@t
�

× �Nnuc�
I=1

e−iZI e f (RI)��h�. (44)

Again, the gauge transformation is compensated for by the unitary
transformation of the nuclear wave function in Eq. (39) and does not
affect any observable quantities as long as our computational model
can perform such transformations.

F. Equations of motion
We derive the equations of motion by considering the time

evolution of the expectation values of the position and momentum
operators using Eq. (10) and noting that

d
dt
�ψ�RJβ�ψ� = i�h �ψ�[H, RJβ]�ψ�, (45)

d
dt
�ψ�ΠJβ�ψ� = i�h �ψ�[H, ΠJβ]�ψ�. (46)

To determine the commutators of RJβ and ΠJβ with the Hamiltonian,
it is useful first to evaluate their commutators with the momentum
operators as follows:

[ΠIα, RJβ] = −i�hδIJδαβ, (47)

[ΠIα, ΠJβ] = i�heZJδIJ�αβγBγ + i�h�IαJβ, (48)

where �αβγ is the Levi-Cività tensor, and summation over the
repeated index γ is implied. We have also introduced the Berry
curvature � with elements
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�IαJβ = ∇JβχIα −∇IαχJβ

= i�h��∇Iαϕ�∇Jβϕ� − �∇Jβϕ�∇Iαϕ��. (49)

In evaluating the commutator in Eq. (48), it is useful to express the
magnetic vector potential as Aα(RI) = 1

2 �αβγBβRIγ and the geometric
vector potential in the symmetric form

χIα = i�h
2
[�∇Iαϕ�ϕ� − �ϕ�∇Iαϕ�], (50)

which is valid since the geometric vector potential is real valued.
We note from Eq. (49) that the Berry curvature is an antisymmetric
3Nnuc × 3Nnuc matrix,

�T = −�. (51)

For each pair of atoms I and J, �IJ is the 3 × 3 matrix whose elements
are given by [�IJ]αβ = �IαJβ, and we note the symmetry

�T
IJ = −�JI . (52)

Evaluating the gauge-transformed Berry curvature, we obtain

�′IαJβ = ∇Jβχ′Iα −∇Iαχ′Jβ

= ∇Jβ(χIα −∇IαF) −∇Iα�χJβ −∇JβF�
= ∇JβχIα −∇IαχJβ = �IαJβ, (53)

demonstrating its gauge invariance.
Returning to Eqs. (45) and (46) and making use of the identity[a2, b] = {a, [a, b]} = a[a, b] + [a, b]a where curly brackets denote

the anti-commutator, we obtain the time derivatives

d
dt
�ψ�RJβ�ψ� = 1

MJ
�ψ�ΠJβ�ψ�, (54)

d
dt
�ψ�ΠJβ�ψ� = − @

@RJβ
�ψ�UBO�ψ� − ZJ

MJ
�αβγ�ψ�ΠJα�ψ�Bγ

− �
I

1
2MI
�ψ��ΠIα, �IαJβ��ψ�. (55)

Finally, we assume that the nuclear wave function is sharply peaked
around R = �ψ�R�ψ� so that

�ψ�UBO�ψ� ≈ UBO(R), (56)

�ψ��IαJβ�ψ� ≈ �Iα,Jβ(R), (57)

�ψ�{ΠIα, �IαJβ}�ψ� ≈ 2 �Iα,Jβ(R) �ψ�ΠIα�ψ�. (58)

Alternatively, the last approximation can also be obtained from a
more restrictive combination of locality assumptions and a resolu-
tion of the identity, neglecting all couplings to excited states.

Using the locality assumptions in Eqs. (56)–(58), the equations
of motion become

MI R̈I = FBO
I (R) + FL

I (Ṙ) + FB
I (Ṙ, R), (59)

where we have introduced the Born–Oppenheimer force

FBO
I (R) = −∇IUBO(R), (60)

the (bare) Lorentz force

FL
I (Ṙ) = −eZI B × ṘI , (61)

and the Berry (screening) force

FB
I (Ṙ, R) =�

J
�IJ(R) ṘJ , (62)

where ∇I in Eq. (60) differentiates with respect to RI . The screened
Lorentz force on nucleus I is the sum of the bare Lorentz force and
the Berry force on this nucleus. Henceforth, we omit the argument
R to the forces.

Equation (59) is legitimate under the assumptions stated but
will be inadequate in the presence of, for example, singularities,
such as conical intersections. There has been recent work seeking
to address this issue in the context of dynamics equations where the
Berry curvature is present.35 Methods such as surface hopping36,37

can also be applicable in this framework. However, these concerns
are beyond the scope of the present work.

G. Screened Lorentz force
The screened Lorentz force on nucleus I is calculated from the

Berry curvature tensor, with a contribution from each atom in the
molecule, as follows:

FLB
I = −eZIB × ṘI +�

J
�IJṘJ . (63)

We recall from Eq. (51) that � is anti-symmetric, implying that each
three-by-three diagonal block �II is anti-symmetric, while the off-
diagonal three-by-three blocks �IJ , with I ≠ J, are, in general, not
anti-symmetric. We note that the product of a three-by-three matrix
with a vector may be expressed as a cross product if and only if the
matrix is anti-symmetric,

�
�

0 −a3 a2
a3 0 −a1−a2 a1 0

�
�
�
�

b1
b2
b3

�
� =
�
�

a1
a2
a3

�
� ×
�
�

b1
b2
b3

�
� = a × b. (64)

Therefore, decomposing the blocks of the Berry curvature tensor
into symmetric and anti-symmetric parts,

�S
IJ = 1

2
��IJ +�T

IJ�, �A
IJ = 1

2
��IJ −�T

IJ�, (65)

and introducing a vector consisting of the independent elements of
the anti-symmetric part of the Berry curvature tensor,

ωA
IJ = ���

�A
IzJy

�A
IxJz

�A
IyJx

���, (66)

we may write the screened Lorentz force as

FLB
I = −eZIB × ṘI +�

J
ωA

IJ × ṘJ +�
J≠I

�S
IJṘJ , (67)

where �S
JJ = 0.
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Taking the field vector B to define the z-axis and introducing
the effective charges QIJ by the condition

e QIJB = −ωA
IJ , (68)

we obtain

FLB
I = −�

J
e(δIJZI +QIJ)B × ṘJ +�

J≠I
�S

IJṘJ (69)

for the screened Lorentz force on nucleus I. For an atom, we have
(in the limit of a complete one-electron basis) Q11 = −Nel, giving

FLB
1 = e(Z1 −Nel)Ṙ1 × B (atom), (70)

where Z1 −Nel is the total charge of the atom. As we shall see in
Sec. II H, Q11 = −Nel is satisfied even for an incomplete basis of
London atomic orbitals.

H. Berry curvature of a London atomic orbital
Let φlm(r; R) be a normalized real-valued field-free atomic

orbital at position R of solid-harmonic quantum numbers ` and m,
and let

ψ`m(r; R) = e−ieA(R1)⋅r��hφ`m(r; R) (71)

be the corresponding field-dependent London atomic orbital, where
A(R) = 1

2 B × R is the magnetic vector potential at the position of the
orbital R. The geometric vector potential generated by the London
orbital is

χ`m(R) = � ψ∗̀mPψ`m dr = eA(R), (72)

where P = −ih∇R. To see how this result arises, we first note that (by
rearranging the scalar triple product)

∇R(−A(R) ⋅ r) = ∇R(A(r) ⋅ R) = A(r). (73)

FIG. 1. Electronic charges calculated from the Berry curvature as a function of basis set without London orbitals for the hydrogen (a), helium (b), and lithium (c) atoms.
Lithium values were calculated using UHF with a spin-projection corresponding to a doublet. Data are plotted as a function of basis set cardinal number X for the cc-pVXZ
and aug-cc-pVXZ basis sets, as well as the STO-3G basis set (X = 1). The magnetic field was oriented along the z-axis, with strengths of �B� = 0.1B0 and �B� = 1.0B0 as
reflected in the plots. London orbitals reproduce the exact electronic charge for all basis sets/magnetic field strengths.
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The integrand of Eq. (72) may therefore be written as

ψ∗̀mPψ`m = eA(r)φ∗̀mφ`m + φ∗̀mPφ`m

= eA(R)φ2
`m + eA(rR)φ2

`m + 1
2

Pφ2
`m, (74)

where, in the last step, we have introduced rR = r − R and used the
fact that φ`m is real valued. Integrating over all space, the first term
gives eA(R) by normalization of the orbital, the second term van-
ishes by parity symmetry, while the last term vanishes by the nor-
malization of the atomic orbital (having interchanged differentiation
and integration), yielding Eq. (72).

From the definition of the Berry curvature tensor given in
Eq. (49), we obtain

�`m = e
�
�

0 −Bz By
Bz 0 −Bx−By Bx 0

�
� (75)

and ωA
`m = eB. Assuming a one-electron system described by this

London orbital, the effective charge is then −e. For the antisym-
metric product of Nel London spin orbitals, the effective charge is−Nele.

I. Berry curvature from finite differences
The elements of the Berry curvature are combinations of the

overlap of wave-function derivatives [see Eq. (49)]. Our task is to
calculate these derivative overlaps from finite differences as follows:

�∇Iαϕ�∇Jβϕ� ≈ S++IαJβ−S+−IαJβ−S−+IαJβ+S−−IαJβ

4δIαδJβ
. (76)

We have here introduced the notation

S±±IαJβ = �ϕ±Iα�ϕ±Jβ�, (77)

where �ϕ±Iα� = �ϕ(r; R ± δIα)� (78)

FIG. 2. Berry curvature of H2 for the RHF singlet state with the STO-3G basis set for orientations parallel [(a) and (c)] and perpendicular [(b) and (d)] to the magnetic field.
The field is oriented along the z-axis with strengths of �B� = 0.1B0 [(a) and (b)] and �B� = 1.0B0 [(c) and (d)]. The molecular orientation perpendicular to the field is along the
x-axis. Equilibrium bond distances are 0.712 Å (a), 0.711 Å (b), 0.698 Å (c), and 0.662 Å (d) as shown by the vertical dashed lines in each plot.
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is the electronic wave function at the geometry R ± δIα, where
δIα denotes a perturbation of magnitude δIα in the Iα component
of R.

The finite-difference method has been used previously
to calculate contributions to the energy from the diagonal
Born–Oppenheimer correction for real-valued wave func-
tions.33,38,39 The present work follows the same finite-difference
formulation for the calculation of the Berry curvature but with
two important complicating factors. The first is that the Berry
curvature tensor contains non-diagonal derivative overlaps with
respect to the nuclear coordinates, which leads to the absence of
simplifications that would otherwise be present in the diagonal
case [e.g., the form of the numerator in Eq. (76)]. The second and
more difficult complication is that, in the presence of a magnetic
field, the electronic wave function is, in general, complex. For
real-valued wave functions, the global phase angle λ is constrained
to be λn = nπ, where n is an integer, which means that any perturbed
wave function

e−iλn��h�ϕ�→ e−iλm��h�ϕ±Iα� (79)

may at most undergo a sign change as a result of the change in the
phase. In the complex case, the phase angle becomes a continuous
variable, and each separate perturbation may result in a drastically
different and uncontrolled phase. For example, the derivative of the
electronic wave function with respect to a nuclear coordinate can be
represented via the finite difference method according to

�∇Iαϕ� ≈ �ϕ̃+Iα� − �ϕ̃−Iα�
2δIα

= �ϕ+Iα�e−iλ+ − �ϕ−Iα�e−iλ−
2δIα

, (80)

where the tilde denotes a phase-corrected wave function.
We want to evaluate Eq. (80) with the phase-corrected wave

function ϕ̃±Iα since the raw, uncorrected wave function ϕ±Iα gives
an ill-defined gradient. For some values of λ±, the numerator in

FIG. 3. Berry curvature of H2 for the RHF singlet state with the cc-pVDZ basis set [(a) and (b)] and the u-cc-pVDZ basis set [(c) and (d)] for orientations parallel [(a) and
(c)] and perpendicular [(b) and (d)] to the magnetic field. The field is oriented along the z-axis with a strength of �B� = 0.1B0 for all panels. The u-cc-pVDZ basis set is the
decontracted cc-pVDZ basis. The molecular orientation perpendicular to the field is along the x-axis. Equilibrium bond distances are 0.746 Å (a), 0.745 Å (b), 0.735 Å (c),
and 0.734 Å (d) as shown by the vertical dashed lines in each plot.

J. Chem. Phys. 155, 024104 (2021); doi: 10.1063/5.0055388 155, 024104-8

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Eq. (80) is on the order of δIα, but for most, it is on the order of one.
Moreover, since ϕ±Iα has an uncontrolled phase, we cannot simply
set λ± = 0. It is therefore necessary to perform the finite difference
scheme accounting for the arbitrary phase of each perturbed wave
function in a justified, systematic manner.

Toward this end, we note that the overlap of any perturbed
wave function with the reference wave function can be represented
in polar form by

�ϕ�ϕ±Iα� = η±Iαeiλ±Iα , (81)

where η±Iα is the modulus and λ±Iα is the argument. We now mul-
tiply �ϕ±Iα� by a phase factor that renders the result of Eq. (81) real.
This is accomplished according to

�ϕ±Iα�→ e−iλ±Iα �ϕ±Iα� = �ϕ̃±Iα�, (82)

which gives

�ϕ�ϕ̃±Iα� = η±Iα. (83)

The condition on the perturbed wave functions imposed by Eq. (83)
is (in the context of finite differences) tantamount to a gauge trans-
form that causes the geometric vector potential to vanish. To see this,
we write the finite difference approximation to the geometric vector
potential in the form

χ̃Iα ≈ i�h��ϕ�ϕ̃−Iα� − �ϕ�ϕ̃+Iα��
2δIα

= i�h(η−Iα − η+Iα)
2δIα

= 0 (84)

from the fact that χIα is real-valued, and since Eq. (84) is pure imag-
inary, it must be zero. As shown in Sec. II F, the Berry curvature is
invariant under geometric gauge transformations and is thus unaf-
fected. We are now in a position to calculate the elements of the
Berry curvature tensor using the phase corrections given in Eq. (82)

FIG. 4. Berry curvature of H2 for the RHF singlet state with the u-cc-pVDZ basis set for orientations parallel [(a) and (c)] and perpendicular [(b) and (d)] to the magnetic field.
The field is oriented along the z-axis with strengths of �B� = 0.1B0 [(a) and (b)] and �B� = 1.0B0 [(c) and (d)]. The u-cc-pVDZ basis set is the decontracted cc-pVDZ basis.
The molecular orientation perpendicular to the field is along the x-axis. Equilibrium bond distances are 0.735 Å (a), 0.734 Å (b), 0.646 Å (c), and 0.609 Å (d) as shown by
the vertical dashed lines in each plot.
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so that

�∇Iαϕ�∇Jβϕ � ≈ S̃++IαJβ−S̃+−IαJβ−S̃−+IαJβ+S̃−−IαJβ

4δIαδJβ
, (85)

with

S̃±±IαJβ = �ϕ̃±Iα�ϕ̃±Jβ�
= eiλ±Iα�ϕ±Iα�ϕ±Jβ�e−iλ±Jβ , (86)

where the phase factors are given in Eq. (81).

III. RESULTS
In this section, we present calculations of the Berry curva-

ture for the hydrogen, helium, and lithium atoms, as well as the
H2 and CH+ molecules, using the finite-difference scheme outlined
in Sec. II. All calculations in this work were performed with the
software package LONDON.15 London orbitals were used in all calcu-
lations in Secs. III B and III C, ensuring gauge-origin invariance.
Calculations in Sec. III A were performed without using London
orbitals.

A. H, He, and Li atoms
In order to demonstrate the importance of London orbitals,

the Berry curvature was calculated for the hydrogen, helium, and
lithium atoms as a function of basis set size without London orbitals
for field strengths of �B� = 0.1B0 and �B� = 1.0B0, where B0 = 2.35× 105 T is one atomic unit magnetic field strength. Calculations were
performed with Dunning’s correlation-consistent polarized valence
basis sets cc-pVXZ40 (without diffuse functions) and aug-cc-pVXZ41

(with diffuse functions), in both cases with cardinal numbers
2 ≤ X ≤ 4. In addition, we performed calculations in the minimal
STO-3G basis,42 with the cardinal number X = 1.

For neutral atoms, such as those considered here, we recall from
Eq. (70) that the exact screened Lorentz force is zero because of
the complete cancellation of nuclear and electronic charges in neu-
tral systems. Importantly, this cancellation is achieved exactly when
calculating the Berry curvature with London orbitals in an orbital
basis of any size. By contrast, in a finite basis without London phase
factors, only partial cancellation is achieved—see Fig. 1, where we
plot the electronic charges of H, He, and Li calculated from the Berry
curvature.

FIG. 5. Berry curvature of H2 for the UHF ββ triplet state calculated with the STO-3G basis set for orientations parallel [(a) and (c)] and perpendicular [(b) and (d)] to the
magnetic field. The field is oriented along the z-axis with strengths of �B� = 0.1B0 [(a) and (b)] and �B� = 1.0B0 [(c) and (d)]. The molecular orientation perpendicular to the
field is along the x-axis.
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As seen in these plots, the convergence of electronic charge
calculated from the Berry curvature without using London orbitals
is slow and irregular, although slightly faster when diffuse func-
tions are added to the basis sets. In fact, a quantitative agreement
with the number of electrons in the atom is only achieved with the
aug-cc-pVQZ basis set and then only for H and He. Because of
the presence of core electrons (for which the basis sets used here
have only single-zeta quality), the basis-set convergence for Li is
slower than that for H and He. In general, we expect the basis-set
convergence of the Berry curvature in atomic calculations with-
out London orbitals to become more difficult with an increasing
number of electrons. In molecules, where, in addition, the atoms
may be far away from the gauge origin, convergence will be slower
still.

For the calculation of Berry curvature, it is clearly essential to
use London orbitals, which give the correct number of electrons
even in the smallest basis sets. In all molecular calculations presented
here, we therefore use London orbitals.

B. H2 molecule
The Berry curvature of the lowest singlet and ββ triplet states of

H2 has been calculated at the Hartree–Fock level of theory at orienta-
tions of the molecule both parallel and perpendicular to the magnetic
field. Calculations were performed with the STO-3G, cc-pVDZ, and
cc-pVTZ basis sets of London atomic orbitals for magnetic field
strengths of 0.1B0 and 1.0B0.

It should be noted that a linear dependence in the basis set
hampers investigations for small bond distances. For this reason,
the Berry curvature was calculated down to a bond distance limit
of 0.1 bohr, beyond which the linear dependence starts to manifest
itself in the cc-pVTZ basis. The finite-difference step size used in all
calculations is 5.0 × 10−4 bohrs, in combination with a DIIS conver-
gence tolerance of 1.0 × 10−8 a.u. This step size has been shown to be
robust and effective to a high level of accuracy in calculations of the
DBOC,33,38 and we find that this is also the case for the Berry curva-
ture, with step sizes between 1.0 × 10−3 and 1.0 × 10−4 bohr, giving
comparable results in most instances.

FIG. 6. Berry curvature of H2 for the UHF ββ triplet state calculated with the u-cc-pVDZ basis set for orientations parallel [(a) and (c)] and perpendicular [(b) and (d)] to the
magnetic field. The field is oriented along the z-axis with strengths of �B� = 0.1B0 [(a) and (b)] and �B� = 1.0B0 [(c) and (d)]. The molecular orientation perpendicular to the
field is along the x-axis. The u-cc-pVDZ basis set is the decontracted cc-pVDZ basis.
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For H2 with the a uniform magnetic field along the z-axis and
a molecular orientation either parallel or perpendicular to the field,
the Berry curvature takes the form

(87)

where �11 = �22 and �12 = −�T
21 = �21 and κ and τ are obtained

from Eq. (49). Since in this particular case, all blocks are anti-
symmetric, we may, as discussed in Sec. II G, calculate the Berry
force in cross-product form using

ωA
11 = ωA

22 = ��
0
0
κ

�
�, ωA

12 = ωA
21 = ��

0
0
τ

�
�, (88)

FIG. 7. Berry curvature of CH+ for the RHF singlet state calculated with the cc-
pVDZ basis set as a function of magnetic field strength. The magnetic field is
oriented along the z-axis with the CH+ molecule oriented perpendicular to the
field along the x-axis. (a) HH and HC block elements and (b) CC and CH block
elements. The bond distance is the zero-field equilibrium value of 1.1226 Å. The
range of magnetic field strengths is �B� = 10−4B0 to �B� = B0.

yielding the equations of motion

MIR̈I = FBO
I −�

J
�eδIJZIB − ωA

IJ� × ṘJ . (89)

Introducing screening charges QIJ as given in Eq. (68), we obtain

QII = − κ
eBz

, QIJ = − τ
eBz

, (90)

and the equations of motion take the form

MIR̈I = FBO
I −�

J
e(δIJZI +QIJ)B × ṘJ , (91)

where the screening charges add up to the partial charge on each
atom,

qI =�
J

QIJ =�
J

QJI . (92)

In general, however, the symmetric part of the Berry curvature does
not vanish, and we cannot express the force in terms of screening
charges.

FIG. 8. Partial electronic charge for hydrogen qH (a) and carbon qC (b) calculated
from Berry curvature elements for the RHF singlet state with the cc-pVDZ basis set
as a function of magnetic field strength. The magnetic field is oriented along the
z-axis with the CH+ molecule oriented perpendicular to the field along the x-axis.
The bond distance is the zero field equilibrium value of 1.1226 Å. The range of
magnetic field strengths is �B� = 10−4B0 to �B� = B0.
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Our equations of motion for H2 agree with those in Ref. 12,
which are specialized to the case of the vanishing symmetric com-
ponent of the Berry curvature. The definition in Ref. 12 of the Berry
curvature corresponds to

�(IJ)α = −2�h Im��αβγ�∇Iβϕ�∇Jγϕ�� = �αβγ�A
IβJγ, (93)

and hence, �(IJ) = −2ωA
IJ . Their (anti-symmetric) Berry curvature

thus differs from ours by a sign convention and a mistaken factor
of two.

In Fig. 2, we have, for the singlet ground state of H2 at the
RHF/STO-3G level of theory plotted, the independent elements of
the Berry curvature

�1x1y = −κ, �1x2y = −τ (94)

as a function of the bond distance for field strengths of 0.1B0 and
1.0B0, with the magnetic field oriented along the z-axis and the
molecule oriented either parallel or perpendicular to the field. These

plots are in good agreement with the top panels in Fig. 1 of Ref. 12,
although a change in the curvature moving from 0.1B0 to 1.0B0 is
noted as the stronger field begins to compress the molecule. For
magnetic field strengths ranging from the weak field to about 0.1B0,
the values of ���B� do not vary appreciably as a function of bond
distance for the STO-3G RHF case.

At very short bond distances, the calculated values of the Berry
curvature are sensitive to the basis set. In particular, at bond dis-
tances less than 0.3 Å, the convergence to the zero bond-distance
limit is not the same across the STO-3G, cc-pVDZ, and cc-pVTZ
basis sets. While the STO-3G basis set converges to a value of−0.5eB0 for both �1x1y and �1x2y, this behavior is not exhibited
by the cc-pVDZ or the cc-pVTZ basis set, depending on the ori-
entation to the field. Decontraction of the cc-pVDZ and cc-pVTZ
basis sets greatly altered the convergence behavior in the region of
small bond distance; see Fig. 3 for the cc-pVDZ basis set. There-
fore, the decontracted basis sets, denoted u-cc-pVDZ and u-cc-
pVTZ, have been used in subsequent Berry curvature calculations.
Note that decontraction of the basis does not play a substantial

FIG. 9. Berry curvature of CH+ for the RHF singlet state calculated with the cc-pVDZ basis set as a function of magnetic field strength. The magnetic field is oriented along
the z-axis with the CH+ molecule oriented parallel to the field along the z-axis. (a) and (b) HH and HC block elements and (c) and (d) CC and CH block elements. A level
crossing occurs between 0.2B0 and 0.3B0, so data from this region were omitted in the plots. The bond distance is the zero field equilibrium value of 1.1226 Å. The range
of magnetic field strengths is �B� = 10−4B0 to �B� = B0.
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role at larger internuclear separation, such as equilibrium, and
the dissociation limit is the same for basis sets with or without
contraction.

In Fig. 4, we have plotted the RHF/u-cc-pVDZ Berry curva-
ture against the bond distance for the ground-state H2 molecule
at field strengths of 0.1B0 and 1.0B0. The trend exhibited by the
STO-3G basis is also observed for the u-cc-pVDZ basis and for
the u-cc-pVTZ basis as shown in the supplementary material.
Antiscreening and superscreening effects are observed for the
perpendicular orientation of H2 across all basis sets, where at
certain bond distances, the values of �1x2y become positive
(antiscreening) and the values of �1x1y become less than −1eB0
(superscreening). The reproduction of this trend across all basis
sets and magnetic field strengths investigated here suggests it is not
an artifact of the basis but a feature of the Berry curvature in this
case.

Figures 5 and 6 show the Berry curvature of the ββ UHF
triplet state in the STO-3G and u-cc-pVDZ basis sets, respectively.
In the parallel orientation, the values of �1x2y tend asymptotically

from the antiscreening regime toward zero as the bond distance is
increased, while the values of �1x1y tend asymptotically from the
superscreening regime toward −1eB0. In the perpendicular orienta-
tion, the elements of the Berry curvature stay within the bounds of 0
and −1eB0 for the STO-3G basis set. In the u-cc-pVDZ basis, �1x2y
and �1x1y move into the antiscreening or superscreening regimes,
depending on the field strength and bond distance. The same fea-
tures are present in both Figs. 5 and 6, with the main differences
being the magnitudes of the curvature, which vary depending on the
field strength and basis set used.

Since the Berry curvature serves to screen the Lorentz force act-
ing on the nuclei, it is noted that the elements �IxIy and �IxJy add up
to the partial electronic charge associated with nucleus I. For H2, this
sum should be −1 for each nucleus, with the sum over both nuclei
giving −2, indicating that the center of mass motion is completely
screened as it should be in a neutral system. This is indeed what we
observe in Figs. 2–6. Depending on the basis set and method, the
values of �IxIy and �IxJy change as a function of bond distance, but
their sum −1 is a constant.

FIG. 10. Partial electronic charge for hydrogen qH [(a) and (b)] and carbon qC [(c) and (d)] calculated from Berry curvature elements for the RHF singlet state with the
cc-pVDZ basis set as a function of magnetic field strength. The magnetic field is oriented along the z-axis with the CH+ molecule oriented parallel to the field along the
z-axis. A level crossing occurs in the region of �B� = 0.2B0 to �B� = 0.3B0, so data from this region were omitted in the plots. The bond distance is the zero field equilibrium
value of 1.1226 Å. The range of magnetic field strengths is �B� = 10−4B0 to �B� = B0.
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C. CH+ molecule
Berry-curvature values were calculated as a function of mag-

netic field strength in the range of �B� = 0.0001B0 to �B� = B0 for the
CH+ molecule using finite differences as outlined in Sec. II. Calcula-
tions were performed for the RHF singlet state with the cc-pVDZ
basis set at the zero field equilibrium geometry of 1.1226 Å. The
magnetic field was oriented along the z-axis, and calculations were
performed both parallel and perpendicular to the magnetic field,
with the perpendicular orientation of the molecule being specifically
along the x-axis.

The Berry curvature tensor of CH+ has a lower symmetry than
that of H2. For the parallel and perpendicular orientations of CH+
to the magnetic field, the structure of the Berry curvature tensor is

� = ��CC �CH

�HC �HH
�

=
����������

0 −ωCC 0 0 −ωHC 0
ωCC 0 0 ωCH 0 0

0 0 0 0 0 0
0 −ωCH 0 0 −ωHH 0

ωHC 0 0 ωHH 0 0
0 0 0 0 0 0

����������
, (95)

obeying the overall symmetry �CH = −�T
HC. However, since

�CH ≠ −�T
CH and �HC ≠ −�T

HC, the Berry force of CH+ (unlike that
of H2) cannot be expressed in cross-product form. For interpretation
purposes, we, nevertheless, calculate the partial charges of C and H
from an average of ωCH�ωHC as follows:

qC = QCC +QCH = −ωCC

eBz
− ωCH + ωHC

2eBz
, (96)

qH = QHH +QHC = −ωHH

eBz
− ωHC + ωCH

2eBz
. (97)

For the perpendicular orientation of CH+ to the magnetic field,
Fig. 7 shows the values of the individual xy components for the
hydrogen, carbon, and mixed blocks of the Berry curvature tensor
plotted as a function of magnetic field strength. For each atom, the
partial charge as a function of field strength is plotted in Fig. 8. The
corresponding data for the parallel orientation are plotted in Figs. 9
and 10.

In the perpendicular case, it is seen from Fig. 8 that the charge
is distributed unequally; moreover, the polarity of this distribution
is enhanced as the field is increased. The electronic partial charge
associated with the hydrogen nucleus tends toward zero as the field
strength increases to 1.0B0, while the partial charge associated with
the carbon nucleus tends toward −6. The magnitude of the sum
of the two partial charges is always equal to the total number of
electrons.

In the parallel case, a level crossing is observed in the region of
magnetic field strengths of 0.2B0–0.3B0. As such, the values of the
Berry curvature tensor in this region are excluded from Figs. 9 and
10. The values of the partial charges given in Fig. 10 increase for
hydrogen and decrease for carbon in the vicinity of the level crossing,
but the values in the limit of weak fields and strong fields are very
similar, in contrast with the perpendicular orientation.

IV. CONCLUSIONS
In this work, we have presented a general scheme for calculating

the Berry curvature using finite differences. This was accomplished
through a phase correction of each perturbed wave function in the
finite-difference procedure, which results in a vanishing geometric
vector potential. In the context of finite differences, such a correc-
tion is equivalent to the calculation of the derivatives in a consistent
gauge. The scheme has been implemented in the program package
LONDON,15 which uses London atomic orbitals for gauge-origin invari-
ant calculations of molecules in a magnetic field. It should be noted
that, while we have reported on Hartree–Fock wave functions, the
method is generally applicable and can be used in the cases of density
functional theory (DFT) and functional configuration interaction
(FCI), for example.

Basis-set studies on small atoms demonstrated that the reli-
ability of the calculated Berry curvature depends critically on the
use of London atomic orbitals—without London orbitals, the results
are unreliable and the basis-set convergence is slow; with London
orbitals, the convergence is rapid and a qualitatively correct Berry
curvature is obtained even in a minimal basis.

The H2 and CH+ molecules were studied using London
orbitals. The Berry curvature was calculated as a function of bond
distance for H2 at both the RHF and UHF levels of theory and as a
function of magnetic field strength for CH+ at the RHF level of the-
ory. For short bond distances, less than 0.5 bohr, the behavior of the
Berry curvature was found to be very sensitive to the basis set used.
The H2 results at the RHF/STO-3G level of theory agree with previ-
ous calculations of the Berry curvature for H2 in a minimal London
Slater basis.

The trends of the Berry curvature across multiple basis sets
and field strengths were investigated. Berry antiscreening and super-
screening were observed across multiple basis sets, indicating that
these are real physical phenomena and not solely basis-set effects.
For CH+ in the perpendicular orientation, the polarity of the
electronic partial charges on hydrogen and carbon increases with
increasing field strength. In the parallel orientation, by contrast,
the partial charges are roughly the same in the weak- and strong-
field limits, with a level crossing occurring at intermediate field
strengths.

The calculation of the Berry curvature from finite differences
opens up the possibility of accurately calculating the screening force
due to the electrons in ab initio molecular dynamics simulations.
The screening of the Lorentz force is of crucial importance and can
change the dynamics of atoms and molecules in a magnetic field
qualitatively. Consequently, the calculation of the Berry curvature
will be important for future work pertaining to molecular dynamics
in magnetic fields.

SUPPLEMENTARY MATERIAL

See the supplementary material for Berry curvature plots with
the cc-pVTZ basis set.
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