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ABSTRACT
The Berry connection and curvature are key components of electronic structure calculations for atoms and molecules in magnetic fields.
They ensure the correct translational behavior of the effective nuclear Hamiltonian and the correct center-of-mass motion during molecular
dynamics in these environments. In this work, we demonstrate how these properties of the Berry connection and curvature arise from the
translational symmetry of the electronic wave function and how they are fully captured by a finite basis set of London orbitals but not by
standard Gaussian basis sets. This is illustrated by a series of Hartree–Fock calculations on small molecules in different basis sets. Based on
the resulting physical interpretation of the Berry curvature as the shielding of the nuclei by the electrons, we introduce and test a series of
approximations using the Mulliken fragmentation scheme of the electron density. These approximations will be particularly useful in ab initio
molecular dynamics calculations in a magnetic field since they reduce the computational cost, while recovering the correct physics and up to
95% of the exact Berry curvature.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0112943

I. INTRODUCTION
The Berry connection and the Berry curvature can be inter-

preted, respectively, as the vector potential and field related to a
geometric (or Berry) phase.1–4 Therefore, these quantities are impor-
tant concepts in many fields of modern physics (for example, the
physics of crystals5 or conical intersections6) and play a key role in
understanding the quantum Hall7 and the Aharonov–Bohm effect.8

Less widely known are the implications of the Berry phase for
molecules in a magnetic field. Schmelcher and Cederbaum9–11 and
later Yin and Mead12,13 as well as Peternelj and Kranjc14 reported
that the Born–Oppenheimer approximation in a magnetic field gives
rise to a geometric vector potential (or Berry connection) in the
effective nuclear Hamiltonian, resulting in an additional velocity-
dependent force in the nuclear equations of motion that depends
on a Berry curvature [ΩIJ],15

FB
I =

Nnuc

∑
J=1

ΩIJṘJ , (1)

where ṘJ is the velocity of nucleus J. This Berry force is essential for
the correct physics of molecules in a magnetic field as it describes

the screening of the nuclei by the electrons.11,12,15 Neglecting the
Berry force in molecular dynamics is, thus, equivalent to omitting
the electrons when calculating the Lorentz force acting on the nuclei.

Since these conceptual discussions almost two decades ago,
the field of electronic-structure calculations in a magnetic field has
grown rapidly, allowing for predictions at magnetic field strengths
up to B0 = 2.35 × 105 T. Besides numerical methods16–24 and
anisotropic Gaussian functions,25–31 London atomic orbitals32–35

have become popular, combining standard Gaussian basis sets with
London phase factors that include a field dependence and gauge-
origin dependence. The advantage of the London-orbital approach
is that it can be combined with various quantum-chemistry methods
(for example, Hartree–Fock (HF) theory, density-functional theory,
and coupled-cluster theory) to calculate the energies and properties
of molecular systems in a magnetic field.36–52

Very recently, Culpitt et al. derived and presented a numeri-
cal scheme for calculating the Berry curvature in a magnetic field at
the HF level of theory using London orbitals.53 Their approach was
later extended to an analytical calculation54 and used to conduct the
first extensive study of ab initio molecular dynamics in a magnetic
field.55,56 While these publications confirmed the properties of the
Berry curvature discussed previously,11,12,15 it remained unclear why
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certain properties of the exact wave function are reproduced exactly
only in the basis-set limit or in a finite basis set of London orbitals.

In this work, we re-examine the geometric vector potential
and the Berry curvature in a magnetic field. In particular, we
are interested in the fulfillment of the magnetic-translational sum
rule,

Nnuc

∑
I,J=1

ΩIJ = eNelB̃, (2)

where e is the unit charge, Nel is the number of electrons, and B̃ is the
magnetic field tensor, related to the magnetic field B by B̃ab = −ϵabcBc
where ϵabc is the Levi-Cività symbol. In a magnetic field, the correct
center-of-mass motion is obtained only if this relation is satisfied
exactly.

In this paper, we demonstrate how Eq. (2) follows from the
translational symmetry of the exact electronic wave function and
also how it is captured by approximate wave functions in a complete
one-electron basis or in a finite basis of London orbitals. Addi-
tionally, we present approximations to ΩIJ that fulfill Eq. (2) while
reducing the computational cost. For more details on the implemen-
tation and calculation of the geometric vector potential and the Berry
curvature, the reader is referred to Refs. 53 and 54.

The theory section (Sec. II) is organized as follows: After
reviewing the notation in Sec. II A and the electronic Hamiltonian
in a magnetic field in Sec. II B, we discuss the nuclear equations
of motion in a magnetic field in Sec. II C, with emphasis on the
Berry force and Berry curvature. Having introduced the electronic
pseudomomentum in Sec. II D, we investigate the behavior of the
Hamiltonian and the wave function upon translation of the nuclei
in Sec. II E and the corresponding behavior of the total nuclear
canonical momentum in Sec. II F. With this information at hand,
we discuss the total Berry curvature and total Berry connection in
Secs. II G and II H, respectively, both for exact wave functions. The
total Berry curvature in HF theory is then discussed in Secs. II A
and II J, treating both exact HF theory and HF theory using a finite
basis of London atomic orbitals. Finally, Sec. II K presents a series
of approximate Berry curvatures based on the Mulliken approach57

for atomic charges. We summarize computational details in Sec. III
and illustrate our theoretical findings by calculations on various
organic molecules at the HF level of theory in Sec. IV, followed by
conclusions in Sec. V.

II. THEORY
A. Notation

We use indices a, b, . . . for the Cartesian components x, y,
and z, indices α, β, . . . for the Nel electrons, indices I, J, . . . for the
Nnuc nuclei, indices i, j, . . . for the Nocc occupied molecular orbitals
(MOs), indices p, q, . . . for the Norb general MOs, and indices μ, ν, . . .
for the Nbas atomic basis functions.

We use eZI , MI , RI , and ṘI to represent the charge, mass, coor-
dinates, and velocity of nucleus I, respectively, while rα and −e are
the coordinates and charge of electron α, respectively. The elec-
tronic and nuclear coordinates are collectively denoted by r and R,
respectively, while we use

R + RT =

⎛
⎜
⎜
⎜
⎜
⎝

R1 + T

R2 + T

⋮

⎞
⎟
⎟
⎟
⎟
⎠

, r + rT =

⎛
⎜
⎜
⎜
⎜
⎝

r1 + T

r2 + T

⋮

⎞
⎟
⎟
⎟
⎟
⎠

(3)

to denote the translation of all nuclei and electrons of the system,
respectively, by the amount T.

B. Electronic Hamiltonian and wave function
Consider a molecular electronic system of Nel electrons in a

uniform magnetic field B, which is represented by a vector potential
in the Coulomb gauge,

A(u, O) =
1
2

B × (u −O), (4)

with gauge origin O. At a given nuclear geometry, R the electronic
Hamiltonian without the spin-Zeeman term is given by

Ĥel(r, R, O) =
1
2

Nel

∑
α=1

π̂2
α(r, O) + V̂el(r; R), (5)

where V̂el(r; R) is the external potential operator and π̂α(r, O) is the
kinetic momentum of electron α, which in terms of the canonical
momentum,

p̂α = −ih̵∇α, (6)

and the vector potential in Eq. (4) takes the form

π̂α(r, O) = p̂α + eA(rα, O). (7)

We assume that the external potential V̂el(r; R) is translationally
invariant, depending only on relative coordinates.

We denote the electronic ground-state wave function by
ϕ(r; R, O), which in the exact case is an eigenfunction of the
electronic Hamiltonian,

Ĥel(r, R, O)ϕ(r; R, O) = EBO(R)ϕ(r; R, O), (8)

where the eigenvalue EBO(R) is the Born–Oppenheimer ground-
state energy. If the wave function is not an eigenstate of the Hamil-
tonian, then the Born–Oppenheimer energy can be calculated as an
expectation value,

EBO(R) = ⟨ϕ(R, O)∣Ĥel(R, O)∣ϕ(R, O)⟩. (9)

The ground-state energy depends on the nuclear geometry but—for
the exact wave function and for certain approximate wave functions
to be considered here—not on the gauge origin.

C. Nuclear equations of motion
The effective nuclear Born–Oppenheimer Hamiltonian in a

uniform magnetic field is given by9–13,15,53
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Ĥeff(R, O) =
Nnuc

∑
I=1

1
2MI
[Π̂ I(R, O) + χI(R, O)]2 + EBO(R). (10)

It consists of the kinetic momentum operator and the geometric
vector potential (Berry connection), respectively, of nucleus I,

Π̂I(R, O) = P̂I − eZIA(RI , O), (11)

χI(R, O) = ⟨ϕ(R, O)∣P̂Iϕ(R, O)⟩, (12)

where the canonical momentum operator of nucleus I is given by

P̂I = −ih̵∇I. (13)

In setting up the Hamiltonian in Eq. (10), we have omitted the usu-
ally small diagonal Born–Oppenheimer correction (DBOC) to the
Born–Oppenheimer potential.

1. Classical equations of motion and forces
Taking Ĥeff(R, O) as the starting point, we may set up the

classical nuclear equations of motion,9–11,15,53,55

MIR̈I = FI(R, Ṙ), (14)

with three contributions to the force on atom I,

FI = FBO
I (R) + FL

I (Ṙ) + FB
I (R, Ṙ)

= −∇IEBO(R) − ZIeB × ṘI +
Nnuc

∑
J=1

ΩIJ(R)ṘJ. (15)

While the first contribution to the force is the familiar position-
dependent Born–Oppenheimer force and the second contribution
is the velocity-dependent Lorentz force, the third contribution
depends on both the position and the velocity of the nucleus and
is known as the Berry force. Without the Berry force, each nucleus
would experience the applied external field rather than the local field
resulting from the screening of the electrons.

The Berry force is obtained from the Berry curvature ΩIJ(R),
which in turn is related to the Berry connection as

ΩIJ(R) =
∂χI(R, O)

∂RJ
− [

∂χJ(R, O)
∂RI

]

T

, (16)

where we have introduced the Jacobian

∂χI(R, O)
∂RJ

= [∇JχT
I (R, O)]

T
(17)

and used the fact that the origin dependence of the Berry curvature
vanishes (as shown in Ref. 53) for the exact wave function and for
certain approximate wave functions to be considered here.

From Eqs. (12) and (16), we obtain the following expression for
the Berry curvature in terms of the electronic wave function:

ΩIJ(R) =
i
h̵
⟨P̂Iϕ(R, O)∣P̂T

J ϕ(R, O)⟩

−
i
h̵
⟨P̂ Jϕ(R, O)∣P̂ T

I ϕ(R, O)⟩
T
. (18)

The Berry curvature is, thus, a second-order nonadiabatic matrix
element, which provides the screening of the magnetic field acting
on the nuclei by the electrons in the system.9–15,53,55

2. Total Berry curvature
Before turning to the general case, let us consider a neutral

molecule in a uniform magnetic field. For a rigid system moving
with a constant velocity Ṫ, the total force acting on all atoms adds
up to zero,

Nnuc

∑
I=1

FI = 0. (19)

Since ∑Nnuc
I=1 FBO

I = 0 follows from the translational symmetry of the
Born–Oppenheimer potential energy EBO(R), the total Lorentz and
Berry forces must cancel in this case. From Eq. (15), we then obtain

eNelB × Ṫ = Ωtot(R)Ṫ, (20)

as a requirement for this cancellation. We have here used the fact
that ∑Nnuc

I=1 ZI = Nel for a neutral system and introduced the total
Berry curvature as the sum over all its 3 × 3 blocks,

Ωtot(R) =
Nnuc

∑
I,J=1

ΩIJ(R). (21)

To eliminate the velocity from Eq. (20), we represent B in terms of
the three-by-three magnetic field tensor, whose elements are related
to the Cartesian field components B̃ab = −ϵabcBc,

B̃ =

⎛
⎜
⎜
⎜
⎜
⎝

0 −Bz By

Bz 0 −Bx

−By Bx 0

⎞
⎟
⎟
⎟
⎟
⎠

. (22)

Since B̃Ṫ = B × Ṫ, we may write the relation in Eq. (20),

Ωtot(R) = eNelB̃, (23)

showing that the total Berry curvature is independent of the nuclear
coordinates of the molecule and that it determines the magnetic field
completely. From now on, we will refer to Eq. (23) as the magnetic-
translational sum rule. It is essential for the correct center-of-mass
motion of a general molecule, stating that an overall translation does
not induce a force on the center of mass of the neutral molecule,
while the force on the center of mass of a charged molecule matches
the Lorentz force of its total charge. We emphasize, however, that
rotations and vibrations may affect the center-of-mass motion of a
nonrigid molecule, even if the molecule is neutral.

In the following, we demonstrate that the magnetic-
translational sum rule holds for the exact electronic wave
function, for the exact HF wave function, and for HF wave functions
expanded in a finite basis of London atomic orbitals.

D. Total electronic pseudomomentum
Of interest to us here is the pseudomomentum of the

electrons within the Born–Oppenheimer approximation. The
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pseudomomentum operator of electron α in a magnetic field B is
defined as9,10,58

k̂α(r, O) = π̂α − eB × rα, (24)

which in the Coulomb gauge of Eq. (4) takes the form

k̂α(r, O) = p̂α −
e
2

B × (rα +O). (25)

We note the following commutators between the Cartesian compo-
nents (denoted by a, b, and c) of the pseudomomentum and kinetic
momentum operators of electron α,10

[k̂a
α, k̂b

α] = −[π̂
a
α, π̂b

α] = ih̵eϵabcBc, (26)

[k̂a
α, π̂b

α] = 0, (27)

where we have omitted arguments for clarity. Introducing the oper-
ators for the total pseudomomentum of the electrons and the total
canonical momentum of the nuclei, respectively,

k̂tot =
Nel

∑
α=1

k̂α, P̂tot =
Nnuc

∑
I=1

P̂I , (28)

and using the commutation relation in Eq. (27), we obtain

[Ĥel, k̂tot] = ih̵
Nel

∑
α=1

∂V̂el(R)
∂rα

= −ih̵
Nnuc

∑
I=1

∂V̂el(R)
∂RI

= −[V̂el(R), P̂tot]. (29)

Consequently, k̂tot + P̂tot commutes with the electronic Hamil-
tonian,

[Ĥel, k̂tot + P̂tot] = 0, (30)

and hence that the sum of the total nuclear canonical momentum
and the total electronic pseudomomentum constitutes a constant of
motion for the electrons in the presence of a magnetic field, within
the Born–Oppenheimer approximation.9,10,58

E. Nuclear-translated Hamiltonian and wave function
We now introduce the unitary operator

Û(r, R, O, T) = exp{K̂(r, R, O, T)}

= exp{−
i
h̵

T ⋅ k̂tot +
i
h̵

η(R, O, T)}, (31)

using the total pseudomomentum operator of the electrons defined
above and η(R, O, T) as a real-valued, differentiable gauge function.
Since the latter can take many different forms, there exists a set of
Û’s differing by a phase factor. Using the fact that the components
in the exponential of Eq. (31) commute

[T ⋅ p̂α, T ⋅
e
2

B × (rα +O)] =
ie
2h̵

B ⋅ (T × T) = 0, (32)

we may factorize the unitary operator in the form

Û(r, R, O, T) = f̂ (R, O, T)ĝ(r, T)t̂(T), (33)

where we have introduced the unitary operators

ĝ(r, T) = exp{−
ie
2h̵
(B × T) ⋅ rtot}, (34)

t̂(T) = exp{−
i
h̵

T ⋅ p̂tot}, (35)

f̂ (R, O, T) = exp{
i
h̵

η(R, O, T) −
ie
2h̵∑α

(B × T) ⋅O}, (36)

in terms of

rtot =
Nel

∑
α=1

rα, p̂tot =
Nel

∑
α=1

p̂α. (37)

We note that t̂(T) and ĝ(r, T) translate the coordinates of every
electron and the gauge origin by a vector −T, respectively, while
f̂ (R, O, T) is an arbitrary phase factor. The order of the operators
in Eq. (33) does not matter since their arguments commute with one
another.

Consider now the unitary transformation of the Hamiltonian
by the operator Û(r, R, O, T). By translation symmetry, we have

Ĥel(r, R, O) = Ĥel(r + rT, R + RT, O + T). (38)

Omitting the arguments of t̂, ĝ, and f̂ for brevity, we then obtain

Û(r, R, O, T)Ĥel(r, R, O)Û †
(r, R, O, T)

= f̂ ĝ t̂Ĥel(r + rT, R + RT, O + T)t̂ †ĝ † f̂ †

= f̂ ĝĤel(r, R + RT, O + T)ĝ † f̂ †

= f̂ Ĥel(r, R + RT, O)f̂ †. (39)

The effect of Û is, therefore, to translate the nuclear coordinates,
leaving the gauge origin and the electronic coordinates unchanged,

Û(r, R, O, T)Ĥel(r, R, O)Û †
(r, R, O, T) = Ĥel(r, R + RT, O). (40)

Within the Born–Oppenheimer approximation, the total electronic
pseudomomentum operator, therefore, generates a translation of all
nuclei in the system. Note that the phase factor cancels out such
that Eq. (40) holds independently of our choice of O and η(R, O, T).
From now on, we will omit the arguments r and O from operators
and the argument O from wave functions to ease the reading of the
equations.

Multiplying the electronic Schrödinger equation in Eq. (8)
from the left by Û(R, T) on both sides and recalling that
Û †
(R, T)Û(R, T) = 1, we conclude from Eq. (40) that
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ϕ(r; R + RT) = Û(R, T)ϕ(r; R). (41)

The operator Û(R, T), thus, generates an eigenfunction of
Ĥel(R + RT) from an eigenfunction of Ĥel(R). Please keep in mind
that Û(R, T) gives us one particular solution ϕ(r; R + RT) with a
phase that depends on our choice of η. Consequently, the entire
set of Û’s generates the entire set of possible eigenfunctions, each
differing by a phase.

F. Translation of the total nuclear momentum
operator

In the present section, we consider the translation of the total
nuclear canonical momentum operator, as obtained by the unitary
transformation

P̂U
tot(R, T) = Û †

(R, T)P̂totÛ(R, T). (42)

Performing a Baker–Campbell–Hausdorff expansion, we obtain a
series of commutators with K̂(R, T) defined in Eq. (31),

P̂U
tot(R, T) = P̂tot + [P̂tot, K̂(R, T)]

+
1
2
[[P̂tot, K̂(R, T)], K̂(R, T)] + ⋅ ⋅ ⋅ . (43)

Evaluating the commutators and noting that P̂tot = −ih̵∇T, we find

[P̂tot, K̂(R, T)] = −k̂tot +∇Tη(R, T), (44)

[[P̂tot, K̂(R, T)], K̂(R, T)] =
e
2

NelB × T, (45)

where all third- and higher-order terms in Eq. (43) vanish since
[B × T, K̂(R, T)] = 0. Consequently,

P̂U
tot(R, T) = −ih̵∇T − k̂tot + γ(R, T) +

e
2

NelB × T, (46)

where γ is the derivative of η with respect to T,

γ(R, T) = ∇Tη(R, T). (47)

We are now ready to consider the translation of the total Berry
curvature and total Berry connections in the next subsections.

G. Total Berry curvature for exact wave functions
Regarding the evaluation of the total Berry curvature, we note

that it may be written in the manner

Ωtot(R) =
i
h̵
⟨P̂totϕ(R)∣P̂T

totϕ(R) ⟩

−
i
h̵
⟨P̂ totϕ(R)∣P̂ T

totϕ(R) ⟩
T
. (48)

Since nuclear canonical momentum is not Hermitian, we cannot
use the turnover rule to simplify the equation. Instead, we combine
Eqs. (41) and (42) to obtain

P̂totϕ(r; R + RT) = P̂totÛ(R, T)ϕ(r; R)

= Û(R, T)P̂U
tot(R, T)ϕ(r; R), (49)

which at T = 0 according to Eq. (46) reduces to

P̂totϕ(r; R) = [γ(R) − k̂tot]ϕ(r; R), (50)

in the notation γ(R) = γ(R, 0). Inserting this expression into
Eq. (48) and using the turnover rule, we obtain

Ωab
tot(R) =

i
h̵
⟨ϕ(R)∣[k̂a

tot−γa
(R), k̂b

tot−γb
(R)]∣ϕ(R)⟩

=
i
h̵
⟨ϕ(R)∣[k̂a

tot, k̂b
tot]∣ϕ(R)⟩

= −eNelϵabcBc, (51)

where, in the last step, we have used the commutator in Eq. (26).
Since Eq. (51) gives Eq. (23) in matrix notation, we conclude that the
magnetic-translational sum rule holds for an exact wave function.
This result confirms the conclusion of Yin and Mead’s more heuris-
tic arguments12 and is related to the dipolar sum rule introduced by
Zabalo, Dreyer, and Stengel.59

H. Total Berry connection for exact wave functions
In the present section, we study the translational behavior of

the total Berry connection χtot(R, O),

χtot(R) =
Nnuc

∑
I=1

χI(R) = ⟨ϕ(R)∣P̂totϕ(R) ⟩. (52)

Since the Berry connection plays the role of a vector potential and
since vector potential in Eq. (4) translates as A(T, O) −A(0, O) =
1
2 B × T, we expect the Berry connection to behave in a similar man-
ner upon translation of the nuclear coordinates. Expressing the
expectation values in terms of the transformed nuclear momentum
operator in Eq. (42), we obtain

Δχtot(R, T) = χtot(R + RT) − χtot(R)

= ⟨ϕ(R)∣[P̂U
tot(R, T)−P̂U

tot(R, 0)]ϕ(R) ⟩. (53)

Use of Eq. (46) yields

Δχtot(R, T) =
e
2

Nel(B × T) + Δγ(R, T), (54)

where Δγ(R, T) is the change in the phase factor,

Δγ(R, T) = γ(R, T) − γ(R, 0). (55)

The first term in Eq. (54) has the form we would expect for the trans-
lation of a vector potential (multiplied by the total electronic charge
−Nele). The second term vanishes when the gauge function is chosen
to be translationally invariant.

Finally, as an alternative to the derivation given in Sec. II G, we
may obtain the total Berry curvature by differentiation of the total
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Berry connection, using Eq. (16) in combination with Eq. (17) and
summing over all pairs of nuclei,

Ωtot(R + RT) = [∇TχT
tot(R + RT)]

T
−∇TχT

tot(R + RT). (56)

Differentiation of the expression given in Eq. (54) gives

∇TχT
tot(R + RT) = ∇TΔχT

tot(R, T)

=
e
2

Nel∇T(B × T)T
+∇TγT

(R, T). (57)

Noting next that

∇T(B × T)T
= −B̃, (58)

[∇TγT
(R, T)]

T
= ∇T∇

T
T η(R, T), (59)

we obtain

∇TχT
tot(R + RT) = −

e
2

NelB̃ +∇T∇
T
T η(R, T). (60)

Since B̃ is antisymmetric it follows that while the contribution from
the gauge function is symmetric, consequently,

Ωtot(R + RT) = eNelB̃, (61)

in agreement with the magnetic-translational sum rule [see Eq. (23)].

I. Berry curvature in exact Hartree–Fock theory
In exact HF theory, the MOs ({φi(r; R, O)}) may be taken to

satisfy the canonical Fock equations,

⟨φi(R)∣φj(R)⟩ = δij, (62)

F̂φ(R)φi(r; R) = εi(R)φi(r; R). (63)

We note that r now refers to a single electronic coordinate and that
the Fock operator F̂φ(r, R, O) depends on the MOs but transforms
in the same manner as the many-electron Hamiltonian Ĥel(r, R)
in Eq. (38), having the same structure of the kinetic operator. In
accordance with Sec. II E, we can, thus, set up a unitary operator
Û i(r, R, O, T) as

Û i(R, T) = exp{−
i
h̵

T ⋅ k̂ +
i
h̵

ηi(R, T)}, (64)

that induces a translation by T of the nuclei in the Fock operator and
the ith MO,

F̂φ(R + RT) = Û i(R, T)F̂φ(R)Û†
i (R, T), (65)

φi(r; R + RT) = Û i(R, T)φi(r; R). (66)

Note that k̂(r, O) now acts on a single electron and that the
use of a different gauge function ηi(R, O, T) for each MO leaves

Eq. (65) unchanged. Proceeding as for the exact many-electron wave
function, we find that

P̂totφi(r; R) = [γi(R) − k̂]φi(r; R), (67)

γi(R) = ∇Tηi(R, T)∣T=0, (68)

corresponding to Eq. (50) for the exact wave function.
We now consider the evaluation of the total Berry curvature in

HF theory. Using Eq. (55) of Ref. 54 and taking into account that the
final two terms therein are real-valued, the Cartesian components of
the total Berry curvature can be written in terms of MOs as

Ωab
tot(R) = −

2
h̵
I{

Nocc

∑
i=1
⟨P̂a

totφi(R)∣P̂b
totφi(R)⟩}. (69)

Combining Eq. (69) with Eq. (67), we can make use of the turnover
rule

Ωab
tot(R) =

i
h̵

Nocc

∑
i=1
⟨φi(R)∣[k̂ a, k̂ b

]∣φi(R)⟩

= −eNelϵabcBc (70)

to conclude that the total Berry curvature in the HF basis-set limit
correctly reproduces the magnetic-translational sum rule. However,
this relation may not hold in a finite orbital basis since approximate
MOs do not necessarily transform according to Eq. (66).

J. Hartree–Fock Berry curvature with London orbitals
We next consider HF wave functions with MOs expanded in a

finite set of London atomic orbitals ωμ(r; Rμ) in the manner

φp(r; R) =
Nbas

∑
μ=1

Cμp(R)ωμ(r; Rμ), (71)

where each London orbital ωμ(r; Rμ, O) is a standard Gaussian
atomic orbital Gμ(r − Rμ) multiplied by a field-dependent phase
factor,

ωμ(r; Rμ) = exp{−
ie
2h̵

B × (Rμ −O) ⋅ r}Gμ(r − Rμ). (72)

The expansion coefficients Cμp(R) are at each R chosen such that
the MOs are orthonormal and the Fock matrix diagonal,

⟨φp(R)∣φq(R)⟩ = δpq, (73)

⟨φp(R)∣F̂φ(R)∣φq(R)⟩ = εp(R) δpq. (74)

The Fock operator transforms in the same manner as in exact HF
theory upon a nuclear translation; see Eq. (65). We shall now see
that it is possible to choose the dependence of the optimal MOs on
R such that they transform in the same manner as the MOs in exact
HF theory upon a translation of all nuclei [see Eq. (66)].
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Carrying out some straightforward algebra, we find that the
London atomic orbitals transform as the exact wave function but
with an additional global phase factor that depends on its center,

Ûp(R, T)ωμ(r; Rμ) = exp{
ie
2h̵
[B × (Rμ −O)] ⋅ T}ωμ(r; Rμ + T).

(75)
Since we are allowed to multiply the coefficients with this phase

factor, leaving all observables unchanged,

Cμp(R + RT) = exp{
ie
2h̵
[B × (Rμ −O)] ⋅ T}Cμp(R), (76)

we find that the approximate MOs in Eq. (71) transform in the same
manner as the exact MOs upon a nuclear translation,

Ûp(R, T)φp(r; R) =
Nbas

∑
μ=1

Cμp(R)Ûp(R, T)ωμ(r; Rμ)

=

Nbas

∑
μ=1

Cμp(R + RT)ωμ(r; Rμ + T)

= φp(r; R + RT). (77)

Consequently, we can use the same argument as in Subsection II I
to demonstrate that the magnetic-translational sum rule is fulfilled
when the MOs are expanded in a finite set of London atomic orbitals.
This has also been observed in molecular simulations in strong
magnetic fields.15,55,56

K. Mulliken approximations to the Berry curvature
Equation (70) gives us the opportunity to derive (reasonable)

approximations of the Berry curvature. This is particularly impor-
tant for molecular dynamics simulations, where the calculation of
the Berry curvature adds appreciable computational expense. We
start by assuming that every component of the Berry curvature (not
only their sum) can be written in terms of nuclear fragments of the
total electronic pseudomomentum (k̂I),

ΩIJ(R) ≈ R{
i
h̵

Nocc

∑
i=1
⟨φi(R)∣k̂I k̂T

J − [k̂ J k̂ T
I ]

T
∣φi(R)⟩}. (78)

By enforcing that the Berry curvature is real-valued, we also allow for
k̂I that are not Hermitian operators. In order to ensure the correct
properties, the operators k̂I must reproduce the commutator of the
electronic pseudomomentum,

Nnuc

∑
I,J=1

Nocc

∑
i=1
⟨φi(R)∣[k̂a

I , k̂b
J ]∣φi(R)⟩ = ih̵εabceNelBc. (79)

The remaining question is now how to separate k̂ into the
contributions from the different nuclei.

In our first ansatz, we assume that the electrons are tightly
bound to the nuclei according to the Mulliken partitioning of the
electron density. Consequently, we can replace the electronic coor-
dinate r with a nuclear coordinate and introduce the Mulliken

projector MI
60 that we treat as independent of the nuclear and

electronic coordinates,

k̂M1
I = −ih̵

∂

∂RI
−

e
2

B × [RI +O]MI , (80)

MI =∑
μ∈I

Nbas

∑
ν
∣ωμ(R)⟩⟨ωμ(R)∣ων(R)⟩−1

⟨ων(R)∣. (81)

Inserting this first Mulliken approximation (M1) into Eq. (78), we
see that the resulting Berry curvature ΩM1

IJ (R) depends only on the
electronic part of the Mulliken charges,57

QM
I (R) = −

1
2

Nocc

∑
i=1
[⟨φi(R)∣MIφi(R)⟩ + ⟨MIφi(R)∣φi(R)⟩], (82)

as well as the magnetic field,

ΩM1
IJ (R) = −δIJeQM

I (R)B̃. (83)

Since the Berry force of I depends only on its charge and velocity,

FM1
I (R, Ṙ) =

Nnuc

∑
J=1

ΩM1
IJ (R)ṘJ = −eQM

I (R)B̃ṘI , (84)

the use of M1 is equivalent to simulating the system with an effec-
tive nuclear charge calculated from the Mulliken charge at a given
molecular geometry,

FL
I (Ṙ) + FM1

I (R, Ṙ) = −e[ZI +QM
I (R)]B̃ṘI. (85)

Thus, we assume that each nucleus is screened by the amount of
electrons it has been assigned to according to the Mulliken scheme.

In the second Mulliken scheme (M2), we also use the Mulliken
partitioning but keep the original electronic-coordinate dependence
of the total electronic pseudomomentum,

k̂M2
I = −ih̵M ∗

I
∂

∂r
−

e
2

B × [r +O]MI. (86)

As a result of this, the Berry curvature now contains the Mulliken
overlap populations [QM

IJ (R)],

ΩM2
IJ (R) = −eQM

IJ (R)B̃, (87)

QM
IJ (R) = −

1
2

Nocc

∑
i=1
[⟨MJφi(R)∣MIφi(R)⟩

+ ⟨MIφi(R)∣MJφi(R)⟩]. (88)

From the resulting Berry forces,

FM2
I (R, Ṙ) = −e

Nnuc

∑
J=1

QM
IJ (R)B̃ṘJ , (89)

we see that the second approximation introduces a coupling between
the motion of the different nuclei via the electrons, since the Berry
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force of I depends on the motion of nucleus J. In this context, QM
IJ (R)

can be interpreted as the amount of electrons of nucleus J that
screen the nucleus I according to the Mulliken scheme. Here, the
atomic Mulliken charge corresponds to the effective nuclear charge
that arises when the entire molecular system moves with a constant
velocity in a magnetic field,

FL
I (ṘT) + FM2

I (R, ṘT) = −
⎡
⎢
⎢
⎢
⎣

ZI +
Nnuc

∑
J=1

QM
IJ (R)

⎤
⎥
⎥
⎥
⎦

B̃Ṫ. (90)

In our final approximation, we represent the electronic density
by Mulliken dipole moments [μI(R)],

k̂M3
I = −ih̵

∂

∂RI
+

e
2Nel

B × μI(R), (91)

μI(R) = −
1
2

Nocc

∑
i=1
[⟨φi(R)∣r∣MIφi(R)⟩ + ⟨MIφi(R)∣r∣φi(R)⟩]. (92)

Consequently, the resulting Berry curvature in the third Mul-
liken approximation (M3) contains a polarization tensor [αIJ(R)],
which is calculated as the derivative of the atomic dipole moment
with respect to a nuclear coordinate,

ΩM3
IJ (R) = −

e
2
[B̃αIJ(R) + [αJI(R)]TB̃], (93)

αIJ(R) =
∂μI(R)
∂RJ

. (94)

Note that this Berry curvature still satisfies the magnetic-
translational sum rule, since atomic dipole moments sum up to the
total electronic dipole moment [μtot(R)],

Nnuc

∑
I,J=1

αIJ(R) =
Nnuc

∑
J=1

∂μtot(R)
∂RJ

= −1Nel. (95)

Equation (93) implies that the screening of nucleus I by the electrons
of J can be described via the change of both atomic dipole moments

(calculated according to the Mulliken scheme) with respect to the
nuclear coordinates. Please note that the form of the M3 approxima-
tion coincides with the ansatz in Ref. 59, where αIJ(R) is determined
from linear-response properties.

We conclude this subsection by briefly discussing the compu-
tational costs of our approximations at the HF level of theory. The
calculations of the M1 and M2 Berry curvatures do not depend on
derivatives of orbitals with respect to nuclear coordinates. Conse-
quently, they can be obtained with no additional cost subsequent
to an energy calculation. This makes their calculation significantly
faster than the calculation of the M3 and exact Berry curvatures,
which both require solving the coupled-perturbed HF equations
or carrying out numerical differentiation. Although the M3 model
does not reduce the computation time, it may give insight into the
interpretation of the exact Berry curvature.

III. COMPUTATIONAL DETAILS
All calculations were performed with the LONDON program

package.61 We employed the restricted HF method using a mag-
netic field of 10−3B0 and used the London orbital versions of
the contracted Gaussian basis sets STO-3G,62 cc-pVDZ,63 aug-cc
-pVDZ,63,64 and cc-pVTZ,63 denoted by l-STO-3G, l-cc-pVDZ, l-
aug-cc-pVDZ, and l-cc-pVTZ, respectively. The molecular geome-
tries of H2, LiH, BH3, CH4, NH3, H2O, FH, and CH3OH were
optimized at the HF/l-cc-pVTZ/∣B∣ = 10−3B0 level of theory prior
to calculating the exact Berry curvature as well as the approximate
Berry curvatures M1 [Eq. (83)], M2 [Eq. (87)], and M3 [Eq. (93)]. If
not stated otherwise, the M3 and exact Berry curvatures are calcu-
lated via finite differences as presented in Ref. 53 for the latter. For
H2, LiH, CH4, H2O, FH, and CH3OH, we used a local minimum of
the geometry with the principal axes perpendicular to the magnetic
field, while the axes of BH3 and NH3 were parallel to the field. In all
calculations, we place the center of mass as well as the gauge origin
(O) at (0, 0, 0).

We determine three Euclidean error measures: ϵcom as the error
in the center-of-mass motion (resulting from a violation of the
magnetic-translational sum rule) during dynamics [see Eq. (23)],

FIG. 1. Error in the center-of-mass motion [see Eq. (96)] of the Berry curvature calculated for different molecules using London orbital basis sets (a) and regular Gaussian
basis sets (b). All calculations were performed at the HF level of theory with ∣B∣ = 10−3B0. We divide the individual error by the magnetic field strength and the number
of electrons to get an estimate for the screening error per electron. In (a), we show errors resulting from the numerical [bars, see Ref. 53] as well as from the analytical
[crosses, see Ref. 54] implementation of the Berry curvature. In (b) only the former is shown. Please note the different scale of the y-axis in (a) and (b).

J. Chem. Phys. 157, 134108 (2022); doi: 10.1063/5.0112943 157, 134108-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ϵcom = ∣∣Ωtot(R) − eNelB̃∣∣2, (96)

ϵMX
tot as the error in all elements of the approximate Berry curvature

MX =M1, M2, and M3,

ϵMX
tot = ∣∣Ω

MX
(R) −Ω(R)∣∣2, (97)

and ϵMX
IJ as the error in the elements within a single IJ block of the

approximate Berry curvature,

ϵMX
IJ = ∣∣Ω

MX
IJ (R) −ΩIJ(R)∣∣2. (98)

For the latter, we calculate the average as well as the maximum
values,

FIG. 2. Overall [a+c+e, see Eq. (97)] and average/maximum [b+d+f, see Eqs. (99) and (100)] error of the approximate Berry curvatures M1, M2, and M3 calculated for a
series of organic molecules at the HF level of theory using ∣B∣ = 10−3B0 as well as the basis sets l-cc-pVDZ (a+b), l-cc-pVTZ (c+d), and l-aug-cc-pVDZ (e+f). We divide
the individual error by the magnetic field strength and the number of electrons to get an estimate for the screening error per electron. In (b+d+f) we use the opacity to
differentiate between the maximum (transparent) and average (not transparent) error.
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ϵMX
avg =

1
N2

nuc

Nnuc

∑
I,J=1

ϵMX
IJ , (99)

ϵMX
max = max{ϵMX

00 , ϵMX
01 , . . . , ϵMX

NnucNnuc}. (100)

To obtain a measure of screening error per electron, we divide all
errors by the magnetic field strength times the number of electrons
(∣B∣Nel). The scans of H2 and LiH were carried out in a perpendicu-
lar field orientation, with bond distances in the range 0.2–10.0 bohr
for H2 and 2.0 − −10.0 bohr for LiH, in steps of 0.1 bohr.

IV. RESULTS AND DISCUSSION
In the theory section, we showed that the correct (overall)

center-of-mass motion during dynamics is closely connected to the
magnetic-translational sum rule [see Eq. (23)], which holds when
London orbitals are used as basis sets. To illustrate this, we calculated
the error according to Eq. (96) for a series of small molecules and
basis sets with and without London phase factors [see Fig. 1]. The
errors obtained with London orbitals [see Fig. 1(a)] are the result of
the numerical scheme53 to determine the Berry curvature, since they

vanish entirely when employing an analytical scheme.54 They can,
thus, be regarded as numerical noise that is independent of the size
of the basis set. In contrast to this, the calculations without London
orbitals [see Fig. 1(b)] exhibit large errors that decrease with increas-
ing basis-set size. While this behavior indicates that regular Gaussian
basis sets reproduce the correct physics in the basis-set limit, they
cannot be used, in practice, since the relatively large triple-zeta basis
set cc-pVTZ still leads to errors of about 20%, in agreement with
our results for atoms in Ref. 53. At this point, we want to stress
that the total Berry curvature calculated without London orbitals
strongly depends on the nuclear coordinates and the gauge origin.
Both dependencies vanish when using either the exact wave function
or London orbitals.

Let us now turn to the Mulliken approximations to the Berry
curvature introduced in Sec. II K. In Fig. 2, we compare their errors
with respect to the exact Berry curvature. The M2 approximation,
based on Mulliken overlap populations, performs best in most of the
investigated cases followed by the M3 approximation, which takes
into account the changes of atomic dipole moments with respect to
the nuclear coordinates. The simplest M1 approximation, including
only the Mulliken atomic charges, performs worst. These trends are
consistent across all three error measures (ϵMX

tot , ϵMX
avg , and ϵMX

max).

FIG. 3. Components of the Berry curvatures [Ω(dXH)] and their approximations [ΩMX
(dXH), see Eqs. (83), (87), and (93)] of H2 (a+c) and LiH (b+d) at different

bond lengths (dXH). The calculations were performed at the HF/l-cc-pVDZ/∣B∣ = 10−3B0 (a+b) and at the HF/l-cc-pVTZ/∣B∣ = 10−3B0 (c+d) level of theory with B being
perpendicular to the bonding axis. The equilibrium bond length is indicated by the vertical dotted line.
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In general, we observe that the error measures depend strongly
on the molecular system, while the basis-set dependence is less pro-
nounced. Augmenting basis functions, however, seem to increase
the errors, possibly due to the erratic behavior of the Mulliken
charges using these basis sets. The overall error at the l-cc-pVDZ
level of theory [ϵMX

tot , see Fig. 2(a)] suggests that the M2 Berry cur-
vature captures more than 90% of the screening of H2, CH4, NH3,
H2O, and FH correctly. This is remarkable considering the simplic-
ity of the approach. With an error of about 70%, the description of
LiH and BH3 is worse. This failure may be due to the challenging
electronic structure of these low-valent molecules. The M3 and M1
models capture, on average, about 80% and 70% of the screening,
respectively. While this was expected for the simple M1 approach,
it is disappointing for the M3 approach, which requires the same
computational effort as the exact Berry curvature. In general, the
M1 model seems to perform best when the off-diagonal matrices
of the Berry curvature are close to zero—for example, in FH and
H2O.

So far, we have only considered the Mulliken approximations
to the Berry curvature at the equilibrium geometry. To investigate
their behavior with changes in the nuclear geometry, we have cal-
culated the exact and approximate Berry curvatures of H2 and LiH
at different bond lengths (d); see Fig. 3. As discussed in Ref. 53,
the limits d → 0/∞ correspond to the one atom/separate atoms
limit. Whereas the M2 model reproduces both the exact united-
atom and dissociation limits well, the M1 and M3 models are exact
only in the dissociation limit. This is visible at the l-cc-pVDZ as
well as at the l-cc-pVTZ level of theory. On the other hand, the M3
model is the only model that correctly predicts the superscreening
[ΩHxHy(dHH) < −1] of H2 and the antiscreening [ΩHxLiy(dHLi) > 0]
of LiH at both levels of theory, suggesting that, even though the M3
model performs worse than the M2 model for the ϵMX metrics, its
structure [see Eq. (93)] is more flexible and able to recover more
features of the exact Berry curvature.

As a final point, we stress that the approximations M1, M2,
and M3 can also be determined from calculations without London
orbitals. In our examples, with a relatively weak magnetic field of
10−3B0 and the gauge origin and center of mass at the origin (0, 0, 0),
the resulting approximate Berry curvatures are very close to those
calculated with London orbitals. Although they are not translation-
ally invariant and dependent on the gauge origin, they may be a
useful alternative when calculations with London orbitals are not
possible—in such cases, however, the gauge origin and the basis set
must be chosen with great care.

V. CONCLUSION AND OUTLOOK
In this work, we have (re)investigated the properties of the

Berry connection and curvature that are crucial for the right physi-
cal behavior of the system in magnetic fields while showing their link
to the screening of the nuclei by the electrons. It was demonstrated
theoretically and via example calculations that these features are
related to the magnetic-translational sum rule and are a direct result
of the translational behavior of the exact electronic wave function,
which is fully captured by the gauge factor used in finite London
orbital basis sets. Since this can only be reproduced by regular basis
sets in the complete basis-set limit, the use of London orbitals is
essential when calculating these properties.

Based on our derivations, we were able to establish a series of
Mulliken approximations to the Berry curvature (M1, M2, and M3),
which recover the properties of the exact Berry curvature, in par-
ticular, the correct center-of-mass motion during dynamics. While
the M2 approximation performed best in our test cases, recover-
ing ∼90% of the exact Berry curvature, future studies will focus
on improvements of the M3 approach, which seems to capture
more features of the electronic screening process. Additionally, we
are planning to test these approximations in molecular dynamics
simulations in magnetic fields.
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