
The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Time-dependent nuclear-electronic orbital
Hartree–Fock theory in a strong uniform
magnetic field

Cite as: J. Chem. Phys. 158, 114115 (2023); doi: 10.1063/5.0139675
Submitted: 22 December 2022 • Accepted: 27 February 2023 •
Published Online: 17 March 2023

Tanner Culpitt,a) Laurens D. M. Peters, Erik I. Tellgren, and Trygve Helgaker

AFFILIATIONS
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern,
N-0315 Oslo, Norway

a)Author to whom correspondence should be addressed: t.p.culpitt@kjemi.uio.no

ABSTRACT

In an ultrastrong magnetic field, with field strength B ≈ B0 = 2.35 × 105 T, molecular structure and dynamics differ strongly from that observed
on the Earth. Within the Born–Oppenheimer (BO) approximation, for example, frequent (near) crossings of electronic energy surfaces are
induced by the field, suggesting that nonadiabatic phenomena and processes may play a more important role in this mixed-field regime
than in the weak-field regime on Earth. To understand the chemistry in the mixed regime, it therefore becomes important to explore non-
BO methods. In this work, the nuclear-electronic orbital (NEO) method is employed to study protonic vibrational excitation energies in the
presence of a strong magnetic field. The NEO generalized Hartree–Fock theory and time-dependent Hartree–Fock (TDHF) theory are derived
and implemented, accounting for all terms that result as a consequence of the nonperturbative treatment of molecular systems in a magnetic
field. The NEO results for HCN and FHF− with clamped heavy nuclei are compared against the quadratic eigenvalue problem. Each molecule
has three semi-classical modes owing to the hydrogen—two precession modes that are degenerate in the absence of a field and one stretching
mode. The NEO-TDHF model is found to perform well; in particular, it automatically captures the screening effects of the electrons on the
nuclei, which are quantified through the difference in energy of the precession modes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0139675

I. INTRODUCTION

There has been a recent interest in molecular electronic
structure1–13 and dynamics14–17 for molecules in a strong magnetic
field. The introduction of a magnetic field presents new challenges
for the derivation and implementation of quantum-chemical meth-
ods. A nonperturbative magnetic treatment of electronic structure
requires accounting for additional terms in the electronic Hamilto-
nian that gives rise to orbital- and spin-Zeeman effects. Additionally,
all mathematics and implementation are necessarily complex. For
Born–Oppenheimer (BO) molecular dynamics, new terms arise in
the nuclear equations of motion due to the magnetic vector poten-
tial and geometric vector potential, with the latter being related to
a geometric or Berry phase.18–21 In the context of dynamics, these
potentials give rise to the Lorentz force acting on the nuclei as well
as a Berry (screening) force,14–17,22 which is given in terms of the
Berry curvature.14–16,21

Most methods for studying nonperturbative electronic struc-
ture and dynamics in a magnetic field have been developed within

the BO paradigm. However, in a strong magnetic field, the ordering
of electronic energy levels can change substantially.23 It is, there-
fore, plausible that the BO approximation is generally less legitimate
in a strong magnetic field than in the field-free case. For this rea-
son, it is desirable to investigate nonperturbative, non-BO electronic
structure methods for calculating molecular properties in the pres-
ence of a magnetic field. The non-BO theory of molecular systems
in a magnetic field has been studied,24–28 but its general application
to molecular systems is not widespread. Recent progress has been
made by Adamowicz et al.29–33 by studying the HD molecule beyond
the BO approximation in a magnetic field using explicitly correlated
Gaussians.

There are several methods for calculating non-BO molecular
properties that fall under the umbrella of multicomponent quan-
tum theory,34–39 where the term “multicomponent” refers to treating
more than one type of particle quantum mechanically, all on equal
footing. In practice, the central theme of many of these meth-
ods is treating both electrons and nuclei quantum mechanically
with orbital-based techniques, an idea dating back at least to the
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work of Thomas40 in 1969 and Thomas and Joy41 in 1970. One
such method is the nuclear-electronic orbital (NEO) method, which
has historically been used to treat all electrons and selected nuclei
(typically protons) quantum mechanically in a molecular system.
This approach eliminates the difficulties associated with molecu-
lar rotations and translations since the molecular frame is fixed
by the clamped nuclei. The NEO method may, thus, be described
as “partially” non-BO, representing a compromise between a fully
quantum treatment and a partial quantum treatment that can be
used to study chemically relevant or interesting quantum effects of
certain nuclei.

Research related to the NEO method is ongoing, and in
the previous decades, there have been many advances. For wave-
function theory, these include the NEO Hartree–Fock (NEO-
HF) theory,42 NEO time-dependent Hartree–Fock (NEO-TDHF)
theory,43 NEO full-configuration-interaction (NEO-FCI) theory,42

NEO explicitly correlated Hartree–Fock (NEO-XCHF) theory,44,45

NEO multiconfigurational self-consistent field (NEO-MCSCF) the-
ory,42 and NEO coupled-cluster (NEO-CC) theory.46,47 Addition-
ally, there have also been advances in the NEO density-functional
theory (NEO-DFT),48–50 NEO time-dependent density-functional
theory (NEO-TDDFT),43 NEO real-time TDDFT,51 and molecular
dynamics within the NEO framework.52–54 Finally, a new vari-
ant of the NEO method, denoted constrained NEO (cNEO),55–57

has recently been developed, allowing for the fully quantum treat-
ment of all nuclei by constraining the expectation values of nuclear
densities.

Here, we concern ourselves with the development and applica-
tion of nonperturbative variants of the NEO-HF and NEO-TDHF
theories that will be relevant to molecular systems in a strong mag-
netic field, both methods having been programmed in the software
package LONDON.58 In particular, we are interested in the NEO-
TDHF vibrational excitation energies and how they are affected by
the introduction of a magnetic field. This has direct relevance to
the results obtained using BO molecular dynamics for molecules,
including the effects of the Lorentz force and Berry curvature on
nuclei. In principle, these effects should be captured directly with
the NEO model. To what extent the nuclear Lorentz force will be
accurately screened by the electrons within the NEO paradigm is an
interesting and open question that we seek to investigate. Toward
this end, we examine the HCN and FHF− molecules, which are both
well-known systems in the NEO context, having been extensively
studied.39,43,59,60

This work is organized as follows: Section II contains the
theoretical background and a derivation pertaining to the NEO gen-
eralized Hartree–Fock (NEO-GHF) method and a derivation of the
generally complex NEO-TDHF working equations. A comparison is
made with the results from the quadratic eigenvalue problem (QEP)
in a magnetic field. Section III presents the protonic vibrational
excitation energies for the HCN and FHF− molecules as a func-
tion of magnetic field strength. A summary of the work and future
directions are given in Sec. IV.

II. THEORY
We consider a joint system of Nnuc classical/clamped nuclei,

Np quantum protons, and Nel electrons. We use the notation MI ,
ZI , and RI for the mass, atom number, and position of a clamped

nucleus I, respectively. We use re
i and pe

i for the position opera-
tor and canonical momentum operator of electron i, respectively.
We use rp

I and pp
I for the position and canonical-momentum oper-

ators of proton I, respectively. The vectors of the collective clamped
nuclear, electronic, and protonic coordinates are denoted by R, re,
and rp, respectively. The vector potential of a uniform magnetic field
B at position u is given by A(u) = 1

2 B × (u −G), where G is the
gauge origin.

A. The NEO Hamiltonian in a uniform magnetic field
The nonrelativistic Schrödinger–Pauli Hamiltonian of a molec-

ular system within the NEO framework in a uniform magnetic field
comprised of heavy nuclei with quantum protons and electrons can
be written as

HNEO = He +Hp +Vep +Vnuc, (1)

where we have introduced the electronic Hamiltonian with terms
representing the electronic kinetic energy, the repulsion between the
electrons, and the attraction of the electrons to the clamped nuclei,

He = 1
2me

Nel�
i=1
[σ ⋅ (pe

i − qeA(re
i ))]2

+ Nel�
i>j=1

e2

4πε0�re
i − re

j � −
Nel�
i=1

Nnuc�
I=1

ZIe2

4πε0�re
i − RI � , (2)

the protonic Hamiltonian with similar terms for the protons,

Hp = 1
2mp

Np�
I=1
[σ ⋅ (pp

I − qpA(rp
I ))]2

+ Np�
I>J=1

ZIZIe2

4πε0�rp
I − rp

J � +
Np�
J=1

Nnuc�
I=1

ZJZIe2

4πε0�rp
J − RI � , (3)

the electron–proton attraction operator,

Vep = −Np�
J=1

Nel�
i=1

ZJe2

4πε0�rp
J − re

i � , (4)

and the operator representing the repulsion between the clamped
nuclei,

Vnuc = Nnuc�
I>J=1

ZIZJe2

4πε0�RI − RJ � . (5)

In Eqs. (2)–(5), me is the electron mass, mp is the proton mass, e is
the elementary charge, ε0 is the vacuum permittivity, qe = −e is the
electron charge, qp = e is the proton charge, and σ is the vector of
Pauli matrices,

σx = ���
0 1

1 0

���, σy = ���
0 − i

i 0

���, σz = ���
1 0

0 −1

���. (6)

In the NEO Born–Oppenheimer approximation, the total ground-
state wave function associated with the electrons and quantum
protons can be written as the product

Ψ(re, rp, R) = ψe(re; R)ψp(rp; R)Θ(R), (7)
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where ψe(re; R) is the electronic wave function, ψp(rp; R) is the
protonic wave function, and Θ(R) is the wave function for the heavy
nuclei. From here onward, we suppress the arguments of the wave
functions. Note that the forms of the electronic and protonic kinetic
energy operators will require additional terms to enter into the one-
particle operators of the Hartree–Fock theory and also necessitate a
generally complex implementation in addition to compensation for
the gauge-dependence of the Hamiltonian.

B. Quadratic eigenvalue problem
For conventional electronic-structure theory within the BO

approximation, the recently developed theory of molecular vibra-
tions in the presence of a magnetic field61 provides a baseline for
a comparison with the NEO-TDHF results. The magnetic field
introduces velocity-dependent forces, and the classical equations of
motion for the nuclei become

mIR̈I = −∇IV(R) + qIṘI × B +�
J

�int
IJ (R) ṘJ. (8)

Here, the first term −∇IV(R) is the BO potential-energy force on
nucleus I, the second term qIṘI × B is the (bare) Lorentz force on
the nucleus I, while the last term ∑J �int

IJ (R)ṘJ is the Berry force
on the nucleus I, expressed in terms of the Berry curvature �int

IJ (R),
whose elements are given by15,62

�int
IαJβ = i�h��∇Iαψe�∇Jβψe� − �∇Jβψe�∇Iαψe��
= −2�h Im�∇Iαψe�∇Jβψe�, (9)

where Iα is a composite nuclear-Cartesian index and ∇Iα differen-
tiates with respect to RIα. The Berry force is also referred to as the
screening force because it represents the screening (due to the elec-
trons) of the bare Lorentz force acting on the nuclei. Introducing the
“external Berry curvature”

�ext
Iα,Jβ = δIJqI�αβζ Bζ , (10)

we may write the nuclear equations of motion more compactly as

mIR̈I = −∇IV(R) +�
J

�tot
IJ (R) ṘJ , (11)

in terms of the total Berry curvature tensor

�tot
IJ (R) = �ext

IJ (R) +�int
IJ (R). (12)

Truncating the equation of motion to first order in the displace-
ment η = R − Req from a minimum on the potential energy surface
(PES) V(Req) and transforming to the frequency domain under the
convention that

F(ω) = � ∞
−∞ f (t)eiωt dt, (13)

f (t) = 1
2π�

∞
−∞F(ω)e−iωt dω, (14)

we obtain

ω2 MIηI(ω) =�
J

HIJ(Req) ηJ(ω) + iω�
J

�tot
IJ (Req) ηJ(ω), (15)

where the elements of the Hessian matrix at Req are given by

HIα,Jβ(Req) = ∇Iα∇JβV(R)�R=Req. (16)

Neglecting the contribution from the total Berry curvature, we
recover the usual eigenvalue problem for molecular vibrations,
whose eigenvalue is the squared oscillation frequency ω2. With the
Berry curvature included, we have a quadratic eigenvalue problem
(QEP),61,63 which yields the oscillation frequency ω directly rather
than ω2. Note that the external and internal contributions to the total
Berry curvature in Eq. (12) may be turned on and off separately,
thereby allowing for the investigation of different cases where the
Lorentz force or Berry force or both are set to zero in the QEP. For a
complete exposition on the QEP, see Ref. 61. For more information
on the Berry curvature and molecular dynamics in magnetic fields,
see Refs. 15–17 and 62.

C. NEO-GHF theory
Here, we present the equations for the NEO generalized

Hartree–Fock (NEO-GHF) theory in a uniform magnetic field. This
model subsumes all other spin variants of Hartree–Fock theory,
such as unrestricted and restricted Hartree–Fock theories, as the
latter two may be derived from the GHF equations by imposing
appropriate restrictions on spin.

In what follows, the lowercase (uppercase) p, q, r, and s indices
refer to the general electronic (protonic) spinors, the lowercase
(uppercase) i, j, k, and l indices refer to the occupied electronic (pro-
tonic) spinors, and the lowercase (uppercase) a, b, c, and d indices
refer to the virtual electronic (protonic) spinors. Throughout this
section, the Greek subscript indices �, ν, λ, and γ refer to the elec-
tronic atomic-orbital (AO) basis, while the Greek subscript indices
α, β, χ, and δ refer to the protonic AO basis. The superscript indices
τ, κ, ξ, and η all refer to spin, which is to say τ, κ, ξ, η ∈ {↑, ↓}.

A generic spinor is a linear combination of spin-dependent
basis functions ϕ(x) according to

Φi(x) =�
�τ

cτ
�iϕ

τ
�(x), (17)

where x is a mixed space–spin coordinate and each ϕτ
�(x) is the

product of a spatial function θ�(r) and a spin function τ. Thus, for
N basis functions, there are 2N terms in the sum in Eq. (17) and
the Fock and density matrices are blocked 2N × 2N matrices in the
AO basis. We adopt the chemists’ notation for two-particle integrals
over spin-dependent basis functions,

(ϕτ
�ϕκ

ν �ϕξ
λϕη

γ) = (�τνκ�λξγη)
= � dx1dx2ϕτ∗

� (x1)ϕκ
ν(x1)r−1

12 ϕξ∗
λ (x2)ϕη

γ(x2)
= � dr1dr2θ∗� (r1)θν(r1)r−1

12 θ∗λ (r2)θγ(r2)δτκδξη, (18)

and adopt the Coulomb exchange shorthand notation

(�τνκ�λξγη) = (�τνκ�λξγη) − (�τγη�λξνκ). (19)

Taking the electronic and protonic wave functions in Eq. (7) to be
Slater determinants comprised of spinors, the NEO-GHF energy in
a uniform magnetic field becomes

E = Ee + Ep + Eep +Vnuc, (20)
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where the electronic, protonic, and electronic–protonic energy
contributions, respectively, in the AO basis are given by

Ee =�
τκ
�
�ν

De,κτ
ν� he,τκ

�ν + 1
2�τκξη

�
�νλγ

De,κτ
ν� De,ηξ

γλ (�τνκ�λξγη)
+ 1

2me�
Υ
�
�ν

BΥS
e
�νTrΣ[σΥ De]ν�, (21)

Ep =�
τκ
�
αβ

Dp,κτ
βα hp,τκ

αβ + 1
2�τκξη

�
αβχδ

Dp,κτ
βα Dp,ηξ

δχ (ατβκ�χξδη)
− 1

2mp�
Υ
�
αβ

BΥ Sp
αβTrΣ[σΥDp]βα, (22)

Eep = −�
τκξη
�
�ν
�
αβ

De,κτ
ν� Dp,ηξ

βα (�τνκ�αξβη). (23)

In these expressions, TrΣ denotes the trace over the spin degrees
of freedom, he,τκ

�ν and hp,τκ
αβ are, respectively, the one-electron and

one-proton Hamiltonian matrix elements in the presence of a mag-
netic field, BΥ is a Cartesian component of the magnetic field vector,
Se and Sp are the purely spatial electronic and protonic overlap
matrices, respectively,

S
e
�ν = � dreθe∗

� (re)θe
ν(re), (24)

S
p
αβ = � drpθp∗

α (rp)θp
β(rp), (25)

while De and Dp are, respectively, the electronic and protonic spin-
blocked density matrices,

De,τκ
�ν =�

i
ce,τ

�i ce,κ∗
νi , (26)

Dp,τκ
αβ =�

I
cp,τ

αI cp,κ∗
βI . (27)

Note that the one-electron and one-proton Hamiltonian matrix ele-
ments contain their respective contributions from the canonical
momentum, external potential, orbital-Zeeman, and diamagnetic
terms.7,64 The orbital-Zeeman and diamagnetic contributions are
due to the presence of the magnetic vector potential in the Hamil-
tonian, with opposite signs arising from the opposite charges qe and
qp in Eq. (1).

Minimization of the energy with respect to the electronic
and protonic spinor coefficients under the constraint of orthonor-
malization of the spinors gives rise to the coupled NEO-GHF
Roothaan–Hall equations,

FeCe = SeCe�e, (28)

FpCp = SpCp�p, (29)

which may be written in spin-blocked form according to

���
Fe,↑↑ Fe,↑↓
Fe,↓↑ Fe,↓↓

���
���

ce,↑
ce,↓
��� =
���

Se,↑↑ 0

0 Se,↓↓
���
���

ce,↑
ce,↓
����e, (30)

���
Fp,↑↑ Fp,↑↓
Fp,↓↑ Fp,↓↓

���
���

cp,↑
cp,↓
��� =
���

Sp,↑↑ 0

0 Sp,↓↓
���
���

cp,↑
cp,↓
����p. (31)

In these expressions, the spin-blocked overlap matrices are given by

Se,τκ
�ν = � dx ϕe,τ∗

� (x) ϕe,κ
ν (x), (32)

Sp,τκ
αβ = � dxϕp,τ∗

α (x)ϕp,κ
β (x), (33)

while the spin-blocked Fock matrices may be written as

Fe,τκ
�ν = he,τκ

�ν +Gee,τκ
�ν (De) +Gep,τκ

�ν (Dp)+ ZFe,τκ
�ν , (34)

Fp,τκ
αβ = hp,τκ

αβ +Gpp,τκ
αβ (Dp) +Gpe,τκ

αβ (De)− ZFp,τκ
αβ , (35)

in terms of the two-particle matrix elements

Gee,τκ
�ν (De) =�

ξη
�
λγ

De,ηξ
γλ (�τνκ�λξγη), (36)

Gpp,τκ
αβ (Dp) =�

ξη
�
χδ

Dp,ηξ
δχ (ατβκ�χξδη), (37)

Gep,τκ
�ν (Dp) =�

ξη
�
χδ

Dp,ηξ
δχ (�τνκ�χξδη), (38)

Gpe,τκ
αβ (De) =�

ξη
�
λγ

De,ηξ
γλ (ατβκ�λξγη) (39)

and the spin-Zeeman matrix elements

ZF e = 1
2me

���
BzS

e (Bx − iBy)Se

(Bx + iBy)Se −BzS
e

���, (40)

ZF p = 1
2mp

���
BzS

p (Bx − iBy)Sp

(Bx + iBy)Sp −BzS
p

���. (41)

The NEO-GHF equations, along with the NEO-UHF and NEO-
RHF special cases, have been implemented in LONDON. The use
of London orbitals ensures gauge-origin invariant calculations for
the molecular properties, where primitive, unnormalized electronic
and protonic London orbitals, respectively, are given by

ϕe
�(re, R) = ωe

�(re, R)eiqeA(R)⋅re
, (42)

ϕp
α(rp, R) = ωp

α(rp, R)eiqpA(R)⋅rp
, (43)

where ωe
�(re, R) and ωp

α(rp, R) are standard primitive Cartesian
Gaussian functions. Note the presence of the electronic and protonic
charges in Eqs. (42) and (43).

J. Chem. Phys. 158, 114115 (2023); doi: 10.1063/5.0139675 158, 114115-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

D. Small oscillations in Hartree–Fock theory
Here, we present a derivation of TDHF theory, also known

as the random phase approximation (RPA), for the generally com-
plex case, which is applicable in the presence of a magnetic field.
The electronic TDHF equations have been derived in various ways,
emphasizing either the dynamical aspects65–67 or that they yield
approximations to the static excitation energies68,69 (see also a recent
work explicitly considering magnetic fields9). In the present NEO
framework, we provide a derivation that emphasizes the analogy
with the semiclassical vibrational problem and is valid in the pres-
ence of a magnetic field. The NEO-TDHF equations have been
previously derived for the purely real-valued case in the absence of a
magnetic field.43

1. TDHF equations in the time
and frequency domains

We determine the time development of the NEO Hartree–Fock
wave function by the Dirac–Frenkel variation principle. For a gen-
eral time-dependent wave function ψ(t) and Hamiltonian H, the
Dirac–Frenkel action functional is given by70

S(ψ) = � t1

t0

L(ψ, ψ̇, t) dt, (44)

where the Lagrangian is

L(ψ, ψ̇, t) = �ψ(t)�H − i@t �ψ(t)�. (45)

The evolution of the wave function from time t0 to t1 is determined
by making S(Ψ) stationary with respect to all the variations in Ψ
consistent with fixed values at the end points. We parameterize the
wave function as

�ψ(t)� = eiκ(t)�0�, (46)

where κ(t) is the time-dependent Hermitian orbital-rotation opera-
tor given by

κ(t) = �̄
PQ̄

κP̄Q̄(t)τP̄Q̄, τP̄Q̄ = c†P̄cQ̄, (47)

and �0� is a time-independent reference wave function, which is
taken to satisfy the conditions

�0�[H, τP̄Q̄]�0� = 0, (48)

for each pair P̄, Q̄. With this parameterization, the integrand in the
Dirac–Frenkel action functional becomes

L(ψ, ψ̇, t) = �0�e−iκ(t)(H − i@t)eiκ(t)�0�. (49)

Performing a Baker–Campbell–Hausdorff (BCH) expansion and
noting that [−i@t , iκ] = κ̇, we arrive at the following expression for
the action integrand in terms of κ(t) and κ̇(t):

L(κ(t), κ̇(t)) = �0�H − i@t �0� + i�0�[H, κ(t)] − iκ̇(t)�0�
− 1

2
�0�[[H, κ(t)] − iκ̇(t), κ(t)]�0� +O(κ3), (50)

where �0� − i@t �0� = 0 since �0� is time independent and�0�[H, κ]�0� = 0 by Eq. (48). From the requirement that

δS = � t1

t0

δL(κ(t), κ̇(t)) dt = 0 (51)

subject to δκP̄Q̄(t0) = 0 and δκP̄Q̄(t1) = 0 for each δκP̄Q̄(t), we obtain
the variational conditions

@L(κ(t), κ̇(t))
@κP̄Q̄(t) = d

dt
@L(κ(t), κ̇(t))

@κ̇P̄Q̄(t) . (52)

Inserting the BCH expression in Eq. (50), we obtain for each pair
P̄, Q̄,

i�0�[κ̇(t), τP̄Q̄]�0� = 1
2
�0�[[H, κ(t)], τP̄Q̄]�0�
+ 1

2
�0�[[H, τP̄Q̄], κ(t)]�0� +O(κ2). (53)

Using the commutator identity [A, [B, C]] + [B, [C, A]]+ [C, [A, B]] = 0 and noting that �0�[[τP̄Q̄, κ(t)], H]�0� = 0 by
Eq. (48) since [τP̄Q̄, κ(t)] is a linear combination of excitation
operators, we find that

i�0�[κ̇(t), τP̄Q̄]�0� = �0�[[H, κ(t)], τP̄Q̄]�0� +O(κ2(t)), (54)

which upon truncation at second order in κ(t) gives the TDHF
equations in the time domain. Finally, transforming to the frequency
domain using the Fourier transform convention in Eq. (13), we
arrive at the standard TDHF equations

ω�0�[τP̄Q̄, κ̂(ω)]�0� = �0�[τP̄Q̄, [H, κ̂(ω)]]�0�, (55)

for each pair P̄, Q̄.

2. NEO-TDHF equations
Before evaluating Eq. (55), we note that the κ(t) operator is

restricted to contain only the particle-conserving excitation and de-
excitation operators. Additionally, only occupied-virtual excitations
and de-excitations are considered. Finally, the Hermiticity of κ(t)
demands that

κ(t) =�
ia

κe
ai(t)a†

aai +�
ia

κe∗
ai (t)a†

i aa

+�
IA

κp
AI(t)b†

AbI +�
IA

κp∗
AI (t)b†

I bA, (56)

where we treat κe
ai(t) and κe∗

ai (t) and likewise κp
AI(t) and κp∗

AI (t) as
independent parameters. We may then write the Fourier transforms
F of these functions as

F[κe
ai(t)] = κ̂e

ai(ω) = Xe
ai(ω), (57)

F[κe∗
ai (t)] = [κ̂ e

ai(−ω)]∗ = [Xe
ai(−ω)]∗ = −Ye

ai(ω), (58)

with analogous equations for the protonic operators. Under the
stated constraints, there are four cases to examine,

ω�0�[a†
i aa, κ̂(ω)]�0� = �0�[a†

i aa, [H, κ̂(ω)]]�0�, (59)

ω�0�[a†
aai, κ̂(ω)]�0� = �0�[a†

aai, [H, κ̂(ω)]]�0�, (60)

ω�0�[b†
I bA, κ̂(ω)]�0� = �0�[b†

I bA, [H, κ̂(ω)]]�0�, (61)

ω�0�[b†
AbI , κ̂(ω)]�0� = �0�[b†

AbI , [H, κ̂(ω)]]�0�. (62)
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Beginning with Eq. (59), we have

Ae
ai,bjX

e
bj + Be

ai,bjY
e
bj + Te

ai,AIX
p
AI + Re

ai,AIY
p
AI = ωXe

bj, (63)

where

Ae
ai,bj = �0�[a†

i aa, [H, a†
baj]]�0�

= Fe
abδij − Fe

jiδab + (ai�jb), (64)

Be
ai,bj = −�0�[a†

i aa, [H, a†
j ab]]�0� = (ai�bj), (65)

Te
ai,AI = �0�[a†

i aa, [H, b†
AbI]]�0� = −(ai�IA), (66)

Re
ai,AI = −�0�[a†

i aa, [H, b†
I bA]]�0� = −(ai�AI), (67)

while Eq. (61) gives the same results, mutatis mutandis, for the
protonic case,

Ap
AI,BJX

p
BJ + Bp

AI,BJY
p
BJ + Tp

AI,aiX
e
ai + Rp

AI,aiY
e
ai = ωXp

BJ , (68)

with

Ap
AI,BJ = �0�[b†

I bA, [H, b†
BbJ]]�0�

= Fp
ABδIJ − Fp

JIδAB + (AI�JB), (69)

Bp
AI,BJ = −�0�[b†

I bA, [H, b†
J bB]]�0� = (AI�BJ), (70)

Tp
AI,ai = �0�[b†

I bA, [H, a†
aai]]�0� = −(AI�ia), (71)

Rp
AI,ai = −�0�[b†

I bA, [H, a†
i aa]]�0� = −(AI�ai). (72)

At this stage, we note that Eq. (60) is equivalent to the conjugate of
Eq. (59) followed by the substitution ω→ −ω, with the same rela-
tionship holding for Eqs. (61) and (62). Additionally, it is clear that
Te = Tp† and Re = RpT, so we need only specify generic “T” and “R”
matrices,

Tai,AI = −(ai�IA), (73)

Rai,AI = −(ai�AI). (74)

Thus, Eqs. (59)–(62) constitute a generalized eigenvalue problem

���������

Ae Be T R

Be∗ Ae∗ R∗ T∗
T† RT Ap Bp

R† TT Bp∗ Ap∗

���������

���������

Xe

Ye

Xp

Yp

���������
= ω

���������

I 0 0 0

0 −I 0 0

0 0 I 0

0 0 0 −I

���������

���������

Xe

Ye

Xp

Yp

���������
.

(75)

In Eq. (75), Xe and Xp are the electronic and protonic excitation
amplitudes, respectively; Ye and Yp are the electronic and protonic
de-excitation amplitudes, respectively; and ω are the eigenvalues,

which may be of protonic, electronic, or mixed character. The
UHF and RHF variants of Eq. (75) are generated through appro-
priate restrictions on spin. For the purposes of this work, we are
interested in an electronic RHF reference with a single quantum
proton. In this specific case, the spin-adaptation of Eq. (75) reveals
that only the electronic singlets couple with the protonic excita-
tions. Summation over electronic spin and the variable substitutions
Xp →√2Xp, Yp →√2Yp yield

���������

Ae,σ Be,σ √
2T

√
2R

Be,σ∗ Ae,σ∗ √
2R∗ √

2T∗√
2T† √

2RT Ap Bp√
2R† √

2TT Bp∗ Ap∗

���������

���������

Xe↑ +Xe↓
Ye↑ + Ye↓√

2Xp↑√
2Yp↑

���������

= ω

���������

I 0 0 0

0 −I 0 0

0 0 I 0

0 0 0 −I

���������

���������

Xe↑ +Xe↓
Ye↑ + Ye↓√

2Xp↑√
2Yp↑

���������
, (76)

where

Ae,σ
ai,bj = (�a − �i)δijδab + 2(ai�jb) − (ab�ji), (77)

Be,σ
ai,bj = 2(ai�bj) − (aj�bi), (78)

are the spin-adapted singlet variants of their GHF counterparts,
written in terms of spin-free orbitals, and Xe↑ (Xe↓) refers to the spin
up (down) excitation amplitudes, with the de-excitations defined
analogously. Note that the other blocks T, R, Ap, and Bp appearing
in Eq. (76) are identical in form to their GHF counterparts [see
Eqs. (66), (67), (69), and (70)], with the salient difference being that,
in the GHF case, the orbitals in question are spinors, while in the
spin-adapted case, the orbitals are spin-free.

Finally, as a brief digression on the use of language, we point out
that terms such as “mode” are only technically appropriate in their
application to the QEP. In NEO-TDHF theory, there are no classical
“modes.” In Sec. II E, we will demonstrate a scheme for the associa-
tion of the quantum excitations to their semi-classical counterparts.
However, it is to be understood that terms such as “stretching mode”
or “precession” in the quantum-mechanical context are used only by
analogy to the classical case and do not suggest that the NEO-TDHF
case itself is classical.

E. Characterization of NEO-TDHF excitations
In this work, Eq. (76) is solved by inversion of the metric

followed by diagonalization. The resulting excitations may be char-
acterized as electronic or protonic according to the dominance of
electronic vs protonic amplitudes in the eigenvectors – that is, Xp ≈ 0
and Yp ≈ 0 for an electronic transition, and Xe ≈ 0 and Ye ≈ 0 for a
protonic transition.39,43,60 For the systems studied in this work across
all field strengths, the NEO-TDHF excitations of interest remained
of dominant protonic character with little fluctuation.
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To associate quantum modes with semi-classical modes, we
examine the time evolution of the expectation value of the proton
position,

�ψ(t)�rp�ψ(t)� = �0�e−iκ(t) rp eiκ(t)�0�
≈ �0�rp�0� + �0�[rp, iκ(t)]�0�, (79)

where we have truncated the BCH expansion at first order in agree-
ment with the stated assumption that κ(t) is small. We are interested
in the resonances of the Fourier series, which in the TDHF paradigm
are taken to be excitation energies. Then, for a particular resonance
frequency ω, we have

κ(t) = κ̂(ω) e−iωt + κ̂(−ω) eiωt

= κ̂(ω) e−iωt + κ̂(ω)∗eiωt. (80)

Thus,

�ψ(t)�rp�ψ(t)� = �0�rp�0� + i�0�[rp, κ̂(ω)]�0�e−iωt + c.c., (81)

where �0�[rp, κ̂(ω)]�0� is the transition dipole moment vector,

�0�[rp, κ̂(ω)]�0� =�
AI
[�I�rp�A�Xp

AI + �A�rp�I�Yp
AI]. (82)

The Fourier component ηTDHF(ω) = i�0�[rp, κ̂(ω)]�0� and the time
evolution ηTDHF(t) = i�0�[rp, κ̂(ω)]�0�e−iωt + c.c. may be compared
to the corresponding semiclassical quantities obtained from Eq. (15).
For the purposes of this work, we are interested in a single quan-
tum proton. In systems where there are multiple quantum protons
that can be taken as approximately distinguishable,71 the procedure
outlined above will also be applicable. However, in the general case
of multiple quantum protons, ηTDHF(ω) cannot be compared to the
QEP due to the indistinguishability of the protons. Other classi-
fication metrics will, then, be required, such as spatial symmetry,
angular momentum, or density.

Following the same procedure as the expectation value of
position, we can examine the time evolution of the density operator

n(r) = ne(r) + np(r), (83)

where

ne(r) =�
pq

Φe∗
p (r)Φe

q(r)a†
paq, (84)

np(r) =�
PQ

Φp∗
P (r)Φp

Q(r)b†
PbQ, (85)

and

�ψ(t)�n(r)�ψ(t)� = �0�n(r)�0� + i�0�[n(r), κ̂(ω)]�0�e−iωt + c.c.
(86)

In Eq. (86), �0�[n(r), κ̂(ω)]�0� is the transition density,

�0�[n(r), κ̂(ω)]�0�
=�

ai
[Φe∗

i (r)Φe
a(r)Xe

ai +Φe∗
a (r)Φe

i (r)Ye
ai]

+�
AI
[Φp∗

I (r)Φp
A(r)Xp

AI +Φp∗
A (r)Φp

I (r)Yp
AI]. (87)

Equations (81) and (82) along with Eqs. (86) and (87) allow for the
visualization of the time evolution of the protonic expectation value

and total density, respectively, for a given frequency ω. When an
excitation is dominated by one type of particle, the other particle’s
contribution to Eq. (87) can be ignored.

The procedure for associating a given NEO-TDHF mode with
a QEP mode is, then, as follows: (1) examine the excitations to find
those dominated by protonic amplitudes; (2) compute ηTDHF(t) and
compare its time evolution to the three QEP modes to find a match
(rotation clockwise, rotation counterclockwise, or stretch; see Fig. 1);
and (3) compute the time evolution of the density using Eqs. (86)
and (87), and ensure that the transition density has a single node,
and is of p-type shape.60 A NEO-TDHF mode that is a counter-
part to a QEP mode will fulfill conditions (1), (2), and (3) given
above.

In previous studies, transition dipole moment vectors and tran-
sition densities were used to interpret the quantum modes calculated
with the NEO-TDHF theory.43,60,71,72 However, this was done only
in the frequency domain, where transition dipole moment vectors
from NEO calculations were compared with, for example, the nor-
mal modes from a harmonic oscillator.71,72 Additionally, this was
done in the absence of a magnetic field, where all quantities could
be taken as real valued.

In a magnetic field, the NEO transition dipole moment vec-
tors and transition densities are complex valued. Consequently, it
becomes more difficult to understand and interpret these quantities

FIG. 1. Schematic representation of protonic vibrational modes of the HCN
molecule oriented along the z-axis for clamped C and N nuclei in (a) zero magnetic
field and (b) magnetic field oriented along the molecular axis. In panel (a), the two
degenerate off-axis bending modes are replaced in panel (b) by non-degenerate
precession modes. One precession is counterclockwise, and the other is clock-
wise. The stretching mode is unaffected by the Lorentz force because its motion
is parallel to the field. All depicted modes can be visualized as a function of time
using the eigenvectors of the QEP or the transition dipole moment vectors from
NEO-TDHF theory as described in the text.
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(and express them in the language of semi-classical modes) without
recourse to visualization as functions of time. This is why it becomes
useful to compute ηTDHF(t) as a function of time and the density
evolution as a function of time because both of these quantities are
real-valued and gauge-independent. We note that the development
of real-time NEO methods51 in a magnetic field may, therefore, be
of interest for future investigations.

III. RESULTS
Here, we present the vibrational excitation energies for the

hydrogen nuclei of the HCN and FHF− molecules. Since these
molecules have been thoroughly studied in the context of NEO-HF
and NEO-TDHF theories in the absence of a magnetic field, they
represent a good starting point for discussing the similarities and dif-
ferences between the field and field-free cases. The heavy nuclei (C,
N, and F) of each molecule are clamped, while the hydrogen nucleus
and all electrons of each system are treated quantum mechanically
with the NEO-TDHF method. Calculations are performed with the
LONDON program, for a range of magnetic field strengths, starting
from B = 0 and ending at B = B0 = 2.35 × 105 T in 0.1B0 incre-
ments, with the field oriented parallel to the molecular axis in both
cases.

All calculations were performed with a singlet electronic NEO-
RHF reference configuration and with the proton occupying a
spin orbital oriented parallel to the field. The electronic basis set
employed in all calculations is a decontracted cc-pVTZ London
basis (denoted Lu-cc-pVTZ) for the heavy atoms and a cc-pV5Z
basis (denoted Lu-cc-pV5Z) for the hydrogen atom. The protonic
basis set used for the hydrogen nuclei is a decontracted London
orbital variant of the PB5-F basis set,73 denoted Lu-PB5-F. Note
that the protonic basis set was developed without contraction.73 It
has been shown that, for quantitative results, contracted cc-pV5Z
and cc-pV6Z electronic basis sets are required for hydrogen nuclei
treated with the NEO method,43,60 which is why we have chosen
to use the decontracted cc-pV5Z basis. The molecular geometries
were optimized at each field strength for the conventional electronic
case, and the protonic basis functions were placed at the optimized
nuclear positions (see the supplementary material for molecular
geometries).

For each molecule, there are three protonic vibrational modes:
two bending modes perpendicular to the molecular axis and a
stretching mode along the molecular axis. The bending modes are
degenerate in the absence of a magnetic field. However, once the
field is introduced, the degeneracy of these modes is broken by the
Lorentz force and the bending modes are then replaced by pre-
cessional modes about the field axis—a lower-frequency precession
counterclockwise and a higher-frequency precession clockwise. The
stretching modes are not split by the field since they lie directly
along the field axis. Note that, in the complex-valued case, even zero-
field degenerate bending modes can be represented as degenerate
precessional modes by taking linear combinations.

In the QEP calculations, the precessional frequencies are
affected by the Berry screening force. We consider three cases. The
first case, denoted QEP-sL (sL = “screened Lorentz”), is the prop-
erly screened scenario, with contributions from both �int and �ext in
Eq. (12). In the second case, denoted QEP-bL (bL = “bare Lorentz”),
we set �int = 0, which corresponds to the QEP with only the bare

Lorentz force acting on the nuclei. Finally, in the third case, denoted
QEP-nL (nL = “no Lorentz”), we set �ext = 0 and �int = 0, corre-
sponding to no Lorentz force at all. These QEP cases are of interest
to compare with the NEO-TDHF results because the NEO-TDHF
frequencies should inherently contain the effects of �tot, including
screening. Thus, we expect the NEO-TDHF calculations to match
most closely with QEP-sL.

In Fig. 1, the vibrational and precessional modes of HCN are
illustrated. In Tables I and II, we have listed the HCN and FHF−

TABLE I. NEO and QEP precessional (ν̃1 and ν̃2) and stretching (ν̃3) frequencies
in units of cm−1 for the hydrogen nucleus in HCN as a function of magnetic field
strength. All calculations at the Hartree–Fock level of theory as described in the text.

B�B0 Mode NEO-TDHF QEP-sL QEP-bL QEP-nL

0.0
ν̃1 972 753 753 753
ν̃2 972 753 753 753
ν̃3 3297 3386 3386 3386

0.1
ν̃1 979 759 755 761
ν̃2 985 764 767 761
ν̃3 3312 3399 3399 3399

0.2
ν̃1 1006 780 773 785
ν̃2 1017 790 797 785
ν̃3 3354 3436 3436 3436

0.3
ν̃1 1046 813 803 821
ν̃2 1063 828 839 821
ν̃3 3419 3496 3496 3496

0.4
ν̃1 897 604 604 627
ν̃2 945 651 652 627
ν̃3 3543 3617 3617 3617

0.5
ν̃1 1082 840 837 867
ν̃2 1137 894 897 867
ν̃3 3650 3717 3717 3717

0.6
ν̃1 1257 1038 1032 1068
ν̃2 1319 1098 1104 1068
ν̃3 3763 3823 3823 3823

0.7
ν̃1 1426 1217 1209 1250
ν̃2 1495 1285 1293 1250
ν̃3 3878 3930 3930 3930

0.8
ν̃1 1591 1387 1377 1424
ν̃2 1668 1462 1472 1424
ν̃3 3995 4038 4038 4038

0.9
ν̃1 1752 1552 1540 1593
ν̃2 1837 1634 1647 1593
ν̃3 4111 4144 4144 4144

1.0
ν̃1 1911 1716 1701 1760
ν̃2 2003 1805 1820 1760
ν̃3 4226 4248 4248 4248
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TABLE II. NEO and QEP precessional (ν̃1 and ν̃2) and stretching (ν̃3) frequencies
in units of cm−1 for the hydrogen nucleus in FHF− as a function of magnetic field
strength. All calculations at the Hartree–Fock level of theory as described in the text.

B�B0 Mode NEO-TDHF QEP-sL QEP-bL QEP-nL

0.0
ν̃1 1438 1476 1476 1476
ν̃2 1438 1476 1476 1476
ν̃3 1754 900 900 900

0.1
ν̃1 1442 1481 1480 1486
ν̃2 1452 1491 1492 1486
ν̃3 1758 905 905 905

0.2
ν̃1 1465 1506 1504 1516
ν̃2 1485 1526 1528 1516
ν̃3 1771 919 919 919

0.3
ν̃1 1503 1548 1545 1563
ν̃2 1534 1577 1581 1563
ν̃3 1791 941 941 941

0.4
ν̃1 1557 1604 1599 1623
ν̃2 1597 1643 1647 1623
ν̃3 1818 968 968 968

0.5
ν̃1 1622 1669 1664 1693
ν̃2 1671 1717 1723 1693
ν̃3 1850 999 999 999

0.6
ν̃1 1696 1739 1732 1768
ν̃2 1755 1796 1804 1768
ν̃3 1884 1031 1031 1031

0.7
ν̃1 1777 1810 1801 1843
ν̃2 1845 1876 1885 1843
ν̃3 1921 1063 1063 1063

0.8
ν̃1 1862 1880 1869 1916
ν̃2 1939 1953 1965 1916
ν̃3 1959 1094 1094 1094

0.9
ν̃1 1949 1946 1933 1986
ν̃2 2034 2027 2041 1986
ν̃3 1996 1122 1122 1122

1.0
ν̃1 2036 2009 1993 2051
ν̃2 2127 2095 2112 2051
ν̃3 2031 1148 1148 1148

vibrational/precessional frequencies associated with the hydrogen
atom for different magnetic field strengths, calculated with the NEO-
TDHF and QEP methods. The QEP results are generated with a mass
on the order of 1024 atomic units for the clamped nuclei.

When comparing NEO and QEP results, we are particularly
interested in (1) the magnitudes of the vibrational excitation ener-
gies and (2) the magnitude of the splitting of the precessional modes
in the screened and unscreened QEP cases. Regarding point (1),
a quantitative comparison is not achievable, even in the BO limit,
because the QEP neglects all anharmonic effects, which are relevant

in both cases, especially so for the FHF− stretching mode. Nonethe-
less, qualitative comparisons can be made in the absence of large
anharmonic effects. A better general benchmark would be, for exam-
ple, a grid-based method, such as the Fourier grid Hamiltonian
(FGH) method,74–76 which has previously been used for bench-
marking NEO-TDDFT.43,60 However, a grid-based machinery that
fully incorporates the Lorentz force and Berry force is not currently
available, although it could be developed in the future. Plots of the
harmonic potentials and the potential energy surfaces for FHF− and
HCN at zero field as well as B0 can be found in the supplementary
material.

Regarding point (2), for the chosen orientation of the molecules
to the field, it is demonstrated in the Appendix that the absolute
value of the frequencies of precessional motion can be calculated
according to the simple formula

�ω±� =
�

ω2
sc

4
+ ω2

bend ∓ ωsc

2
, (88)

where the two cases correspond to clockwise (ω−) and counter-
clockwise (ω+) precessions about the field axis. Here, ωbend is
the bending frequency as obtained from the PES in the harmonic
approximation (QEP-nL), while ωsc is the screened cyclotron fre-
quency ωsc = (qpBz − α)�mp, where α is an element of the Berry
curvature. In the absence of screening, ωsc reduces to the standard
cyclotron frequency ωc = qpBz�mp.

The calculated values of �ω±� exactly reproduce the QEP-bL
(using ωc) and QEP-sL (using ωsc) results. Reproduction of the split-
ting �ω−� − �ω+� = ωsc is a particularly robust indicator of capturing
the magnetic forces as the splitting only depends on cylindrical sym-
metry and is independent of ωbend and the anharmonicity of the
PES. This allows for a quantitative comparison of the description of
the magnetic effects at the (harmonic) QEP and (anharmonic) NEO
levels, respectively. For a derivation of Eq. (88), see the Appendix.

A. HCN
Table I contains the frequencies of the stretching and bending

modes of HCN calculated using the NEO-TDHF and QEP meth-
ods (all three variants) as functions of the magnetic field strength.
The stretching frequency is plotted in Fig. 2, while Fig. 3 shows
the bending/precessional frequencies. The stretching frequencies are
unaffected by the Lorentz force (by the parallel field orientation
of the molecule) and are, therefore, the same for all QEP variants.
We note the presence of a discontinuity in the plots, arising from a
level crossing between 0.3B0 and 0.4B0. Examination of the molec-
ular orbitals and the fact that the C–N bond at 0.4B0 is significantly
longer than it is at 0.3B0 indicate that the C–N triple bond is reduced
to a single bond and two nonbonding electron pairs at higher field
strengths. By using the converged conventional electronic density as
an initial guess for the NEO iterations, we were able to converge to
the corresponding electronic state in the NEO calculations in this
region.

Since HCN contains a terminal hydrogen, we would expect the
NEO-TDHF stretching frequency to be lower than the correspond-
ing QEP frequency due to anharmonicity. This is, indeed, observed
in Fig. 2, although the difference decreases with increasing field
strength as the anharmonicity is affected by a compression of the
bond in the field. For the precessional modes, by contrast, the NEO
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FIG. 2. Vibrational excitation energies corresponding to the stretching mode ν̃3 of
HCN for the NEO-TDHF and QEP methods. Since the molecule is oriented parallel
to the magnetic field, the QEP results are the same for all three variants (QEP-sL= QEP-bL = QEP-nL). The discontinuity in the plot between 0.3B0 and 0.4B0 is
due to a level crossing.

frequencies are roughly 200 cm−1 higher than the QEP frequen-
cies at all field strengths; see Fig. 3. Note that frequencies less than≈1000 cm−1 can be difficult to accurately calculate with NEO-TDHF
because of the slow convergence with respect to electronic hydro-
gen basis set size. The numbers reported here are comparable to
previous NEO-TDDFT studies done at zero field for the basis sets
employed.43,60

An interesting observation in Fig. 3 is that the QEP-bL and
QEP-sL calculations do not give the same cyclotron splitting of

FIG. 3. Vibrational excitation energies corresponding to the precession modes ν̃1
and ν̃2 of HCN for the NEO-TDHF method and the three variants of the QEP
method. The dashed lines with circles correspond to ν̃1 for a given method, while
the solid lines with triangles correspond to ν̃2. The inset highlights the different
precessional splittings of the QEP-sL and QEP-bL methods. The discontinuity in
the plot between 0.3B0 and 0.4B0 is due to a level crossing.

FIG. 4. Difference in energy between the two precessional modes of HCN for the
NEO-TDHF, QEP-sL, and QEP-bL methods. For the QEP-bL method, the splitting
is equal to the cyclotron frequency for the proton, qpBz�mp. The discontinuity in
the plot between 0.3B0 and 0.4B0 is due to a level crossing.

the precessional modes, as highlighted in the inlay of the figure.
This behavior can be understood by noting that the QEP-bL split-
ting is always equal to the proton’s cyclotron frequency, while
the QEP-sL splitting vanishes in the limit of perfect screening.
As seen in Fig. 4, the NEO splitting agrees well with the QEP-
sL results, suggesting that the NEO-TDHF method is capable
of capturing the effects of both the bare Lorentz force and the
Berry screening force. Note that the effect of the latter greatly
decreases at field strengths greater than 0.3B0, again reflecting the
different character of the ground state in this regime. However,
the absence of screening at 0.4B0, implied by the fact that the
screened and unscreened splittings are nearly identical, might be
an artifact of the level of theory in the proximity of an avoided
crossing.

B. FHF−
Table II contains the frequencies for the stretching and bending

modes of FHF− calculated using the NEO and QEP methods as func-
tions of magnetic field strength. Figure 5 shows the stretching fre-
quencies, while the bending/precessional frequencies are plotted in
Fig. 6. The stretching frequencies are the same for all QEP variants,
being unaffected by the Lorentz force due to parallel orientation of
molecule to the field.

Previous zero-field studies using DFT and a grid-based FGH
method have shown that the stretching frequency of FHF− is higher
than the bending frequencies, in agreement with zero-field NEO-
TDDFT results.43,60 Our field-dependent NEO-TDHF frequencies
exhibit the same ordering except in the strongest fields, where the
molecule is compressed to the point where one (at 0.9B0) or both (at
1.0B0) precessional modes become higher in energy than the stretch-
ing mode. By contrast, the QEP stretching modes are always lower
in energy than the QEP precessional modes. The large difference
in magnitude between the QEP and NEO-TDHF stretching mode
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FIG. 5. Vibrational excitation energies corresponding to the stretching mode ν̃3
of FHF− for the NEO-TDHF and QEP methods. Since the molecule is oriented
parallel to the magnetic field, the QEP results are the same for all three cases
(QEP-sL = QEP-bL = QEP-nL).

energies (see Fig. 5) is due to considerable anharmonic effects mak-
ing the bond stiffer relative to the harmonic case; see Fig. S1 in the
supplementary material.

In FHF−, the NEO and QEP-sL precessional frequencies are
much closer to each other than in HCN, being always less than
100 cm−1 apart; see Fig. 6. As was the case for HCN, the cyclotron
splitting of the precessional modes is reduced when screening is
included by going from the QEP-bL level of theory to the QEP-sL
level; see Fig. 7. The NEO-TDHF results again agree very well with
the QEP-sL results, demonstrating the capability of the NEO model
to directly account for the effects of screening.

FIG. 6. Vibrational excitation energies corresponding to the precessional modes
ν̃1 and ν̃2 of FHF− for the NEO-TDHF method and the three variants of the QEP
method. The dashed lines with circles correspond to ν̃1 for a given method, while
the solid lines with triangles correspond to ν̃2. The inset highlights the different
precessional splittings of the QEP-sL and QEP-bL methods.

FIG. 7. Difference in energy between the two precessional modes of FHF− for the
NEO-TDHF, QEP-sL, and QEP-bL methods. For the QEP-bL method, the splitting
is equal to the cyclotron frequency for the proton, qpBz�mp.

IV. CONCLUSIONS
In this work, we have presented the theory and implementation

of the NEO-GHF and NEO-TDHF models in the presence of a uni-
form magnetic field. The NEO-TDHF derivation proceeded through
the Dirac–Frenkel action. For a given transition, the protonic posi-
tion expectation value and density as a function of time can be
visualized, aiding in the characterization of the excitations. The rel-
evant equations were implemented in the London program, which
utilizes London orbitals for gauge-origin invariant calculations in a
magnetic field.

The NEO-TDHF results for the precessional and stretching
modes of the HCN and FHF− molecules were compared to the
QEP results for three cases: QEP-nL (no Lorentz forces), QEP-bL
(bare Lorentz forces, and QEP-sL (screened Lorentz forces). Because
the QEP-sL model includes the screened Lorentz force, it is the
most appropriate QEP variant for comparison with the NEO
method. The NEO excitation energies were found to be within≈200 cm−1 of the QEP-sL energies except for the FHF− stretching
mode, which showed a larger disparity, likely due to anharmonic
effects. These differences are comparable to those observed in the
zero-field case.

The degeneracy of the precessional (bending) mode is lifted
in a magnetic field by coupling to the cyclotron motion. The pre-
cessional splitting is independent of the PES in both the screened
and bare Lorentz cases, allowing for quantitative comparisons of the
NEO and QEP results. The QEP-bL splitting is always greater than
the QEP-sL and NEO splittings, in agreement with the observation
that degeneracy is recovered in the limit of perfect screening. The
QEP-sL and NEO splittings are in excellent agreement, confirming
that the NEO model directly accounts for the effects of the Berry
curvature.

The capability of NEO-TDHF to account for screening of the
Lorentz force is significant, bearing in mind that the QEP-sL model
requires the Berry curvature to be evaluated, making this model
much more complex and expensive than the QEP-nL and QEP-bL
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models. By contrast, the NEO-TDHF model includes Lorentz
screening automatically, in addition to non-BO and nuclear quan-
tum effects. In our examples, these effects tend to reduce the screen-
ing experienced by hydrogen in the field with respect to the BO
treatment.

One drawback of NEO-TDHF currently is that in order to
ensure accurate protonic excitation energies, the electronic hydro-
gen atom basis sets need to be large.43,60 However, having numeri-
cally verified that NEO-TDHF captures the effects of Berry curvature
and splitting of modes for the systems studied, we conclude that
NEO-TDHF, in principle, captures all the effects that the QEP
captures. As NEO-TDHF additionally captures anharmonicity and
non-BO effects, it is the more accurate of the methods. Therefore,
the future development of NEO methods in a magnetic field will be
of interest, especially so for molecular dynamics, where screening is
of great importance.

SUPPLEMENTARY MATERIAL

See the supplementary material for HCN and FHF− geome-
tries and plots of the harmonic potentials and the potential energy
surfaces for FHF− and HCN at zero field and B0.
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APPENDIX: BENDING VIBRATION AND PRECESSION
FOR A CYLINDRICALLY SYMMETRIC MODEL SYSTEM

Consider a molecule with a linear equilibrium structure. We
take the molecule to be aligned to the z-axis, with N nuclear
positions at rj = (0, 0, zj), labeled in the order of decreasing coor-
dinate zj > zj+1 with j = 1, . . . , N. Furthermore, we assume that the
molecule has a bending mode that involves only the first atom
located at one end and the other nuclei being clamped. We fix the
bond distance R = �z1 − z2� and assume cylindrical symmetry around
the z-axis. We take into account the forces from the electronic PES
and the bare Lorentz force and the Berry screening force. With the
spherical coordinate system defined as in Fig. 8, the nuclear position
and magnetic field are given by

r1 =
������

R sin(θ) cos(ϕ)
R sin(θ) sin(ϕ)

R cos(θ)

������
, B =

������

0

0

Bz

������
. (A1)

The potential is taken to be a function V(θ) of θ, while the magnetic
forces are taken to be described by a vector potential that depends
on θ in the manner

a1(θ) = 1
2

B × r1 = 1
2

BzR sin(θ)eϕ. (A2)

Because we are solely interested in the motion of the nucleus at r1,
we need only consider the screening force that arises from the Berry
curvature at that nucleus [see Eq. (8)], corresponding to a single I = J
block of Eq. (9). The Berry screening force, then, becomes

�(r)ṙ1 = s1(r) × ṙ1, (A3)

where s1 is the curl of the corresponding geometric vector potential,

s1(r) = ∇ × χ1(r), χ1(r) = �ψ�p1�ψ�. (A4)

Here, ψ is the electronic wave function and p1 = − i @
@r1

is the canon-
ical momentum operator for the nucleus at r1. Note that s1(r) and
χ1(r) are functions of the coordinates of all nuclei because they
depend on the electronic wave function of the entire system. In a
molecule, the screening force generated by Eq. (A3) will, therefore,
in general, not be complete (i.e., exactly canceling the bare Lorentz
force), as it would for an atom undergoing similar motion.15

For the given orientation of the molecule to the field, s1(r)
has only a nonzero z component.15 We now make the additional
assumption that, for small deviations of θ and ϕ around equilibrium,
s1(r) is constant,

s1(r) =
������

0

0

α

������
. (A5)

Under this assumption, we can represent the geometric vector
potential in the symmetric gauge, analogous to the magnetic vector
potential in Eq. (A2):

χ1(θ) = 1
2

s1 × r1 = 1
2

αR sin(θ)eϕ. (A6)
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FIG. 8. Spherical coordinate system. The bending modes and precession modes
are illustrated, respectively, in red and blue for a triatomic linear molecule.

The Lagrangian consists of one contribution identical to a three-
dimensional pendulum, along with magnetic and geometric vector
potentials

L = m
2

ṙ2
1 + ṙ1 ⋅ [qa1(θ) − χ1(θ)] −V(θ)

= 1
2

mR2θ̇ 2 + 1
2

mR2(ϕ̇ 2 + ωscϕ̇) sin (θ)2 −V(θ), (A7)

where the screened cyclotron frequency,

ωsc = qBz − α
m

, (A8)

is calculated from the effective magnetic field Bz and a screening con-
tribution α. In the absence of screening, α = 0, we recover the stan-
dard cyclotron frequency ωc = qBz�m. Calculating the generalized
momenta, we obtain

pθ = @L

@θ̇
= mR2θ̇, (A9)

pϕ = @L

@ϕ̇
= mR2(ϕ̇ + 1

2
ωsc) sin (θ)2, (A10)

while the generalized forces are given by

Fθ = @L

@θ
= mR2(ϕ̇ 2 + ωscϕ̇) sin(θ) cos(θ) − @V

@θ
, (A11)

Fϕ = @L

@ϕ
= 0. (A12)

We will solve Lagrange’s equations of motion ṗθ = Fθ and ṗϕ = Fϕ
in two special cases: for a pure bending motion with constant ϕ and
varying θ and for a pure precessional motion with constant angular
velocity ϕ̇ and constant θ.

We consider the bending motion first. Since Fϕ = 0, the equa-
tion of motion for ϕ becomes ṗϕ = 0, implying that the momentum
is conserved,

pϕ = mR2��ϕ̇ + 1
2

ωsc
�
� sin (θ)2 = C. (A13)

A pure bending mode, with constant ϕ and varying θ, is, therefore,
possible only if ωsc = 0. From Eq. (A8), we see that this happens
either in a zero magnetic field where qBz = α = 0 or in a magnetic
field with perfect screening qBz = α. In the harmonic approxima-
tion, V(θ) = 1

2 kθ2, Lagrange’s equation of motion ṗθ = Fθ, then,
simplifies to

mR2θ̈ + kθ = 0. (A14)

Introducing the vibrational frequency

ωbend =
�

k
mR2 , (A15)

we may write the solution as θ(t) = θ0 sin(ωbendt + α0), where α0 is
a constant.

A pure precessional motion corresponds to constant ϕ̇ and con-
stant θ and, therefore, θ̇ = 0. The latter condition is possible if and
only if Fθ = 0 vanishes, yielding a quadratic equation for ϕ̇,

ϕ̇ 2 + ωscϕ̇ − @V�@θ
mR2 sin(θ) cos(θ) = 0. (A16)

In the harmonic approximation V(θ) ≈ 1
2 kθ2 with a sufficiently

small value of θ so that sin(θ) ≈ θ and cos(θ) ≈ 1, we obtain the
solutions

ϕ̇± ≈ −ωsc

2
±
�

ω2
sc

4
+ ω2

bend. (A17)

Hence, the two possible precessional frequencies may be predicted
from the effective cyclotron frequency (with or without screening)
and the bending frequency. To demonstrate the accuracy of the
outlined derivation, calculation of the magnitude of the two preces-
sional frequencies according to Eq. (A17) using only ωbend, Bz , and
α as inputs yields exactly the same results as QEP-bL (α = 0) and
QEP-sL.

Finally, we remark that the precessional motion in the Carte-
sian coordinates takes the form

r1 = R

������

sin(θ) cos(ϕ̇±t)
sin(θ) sin(ϕ̇±t)

cos(θ)

������
, (A18)
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where θ and ϕ̇± are constant. Because 2 cos(ϕ̇±t) = eiϕ̇±t + e−iϕ̇±t

and 2i sin(ϕ̇±t) = eiϕ̇±t − e−iϕ̇±t , the Fourier spectrum of this motion
has the frequencies ±ϕ̇±. When the motion is analyzed in Fourier
space, we, thus, obtain a total of four frequencies for the two pos-
sible precessional motions. Among these frequencies, we may, for
example, calculate

(−ϕ̇−) − ϕ̇+ = �ϕ̇−� − �ϕ̇+� = ωsc, (A19)

which corresponds to the difference in excitation energies �ϕ̇−� and�ϕ̇+�. This quantity has the virtue of being insensitive to the potential
energy surface V(θ) as long as it is cylindrically symmetric.
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60T. Culpitt, Y. Yang, F. Pavošević, Z. Tao, and S. Hammes-Schiffer, J. Chem.
Phys. 150, 201101 (2019).
61E. Tellgren, T. Culpitt, L. Peters, and T. Helgaker, “Molecular vibrations in the
presence of velocity-dependent forces,” arXiv:2212.10246 (2022).
62T. Culpitt, L. D. M. Peters, E. I. Tellgren, and T. Helgaker, J. Chem. Phys. 156,
044121 (2022).
63F. Tisseur and K. Meerbergen, SIAM Rev. 43, 235 (2001).
64S. Sen and E. I. Tellgren, J. Chem. Phys. 148, 184112 (2018).
65R. McWeeny, Methods of Molecular Quantum Mechanics, 2nd ed. (Academic
Press, 1992).
66J. Olsen and P. Jørgensen, J. Chem. Phys. 82, 3235 (1985).

J. Chem. Phys. 158, 114115 (2023); doi: 10.1063/5.0139675 158, 114115-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1126/science.1219703
https://doi.org/10.1039/c2cp40965h
https://doi.org/10.1063/1.4928056
https://doi.org/10.1063/1.4928056
https://doi.org/10.1021/acs.jctc.5b00535
https://doi.org/10.1063/1.4979624
https://doi.org/10.1002/qua.25391
https://doi.org/10.1021/acs.jctc.8b01140
https://doi.org/10.1021/acs.jctc.9b00242
https://doi.org/10.1021/acs.jctc.9b00103
https://doi.org/10.1039/d0cp04169f
https://doi.org/10.1021/acs.jctc.0c01297
https://doi.org/10.1021/acs.jctc.0c01269
https://doi.org/10.1021/acs.jctc.1c00236
https://doi.org/10.1021/acs.jctc.1c00236
https://doi.org/10.1103/physrevb.75.161101
https://doi.org/10.1063/5.0055388
https://doi.org/10.1063/5.0056235
https://doi.org/10.1063/5.0056235
https://doi.org/10.1063/5.0097800
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/revmodphys.64.51
https://doi.org/10.1119/1.18570
https://doi.org/10.1088/0953-8984/12/9/201
https://doi.org/10.1063/5.0093092
https://doi.org/10.1088/0031-8949/36/2/018
https://doi.org/10.1016/0003-4916(78)90276-2
https://doi.org/10.1103/physreva.38.6066
https://doi.org/10.1088/0953-4075/21/15/005
https://doi.org/10.1088/0953-4075/21/15/005
https://doi.org/10.1088/0953-4075/28/14/012
https://doi.org/10.1002/(sici)1097-461x(1997)64:5&tnqx3c;501::aid-qua3&tnqx3e;3.0.co;2-&tnqx23;
https://doi.org/10.1016/j.cplett.2015.09.051
https://doi.org/10.1016/j.cplett.2017.06.016
https://doi.org/10.1063/1.5055767
https://doi.org/10.1016/j.cplett.2020.138041
https://doi.org/10.1063/5.0101352
https://doi.org/10.1103/physrevlett.86.2984
https://doi.org/10.1080/00268970410001668525
https://doi.org/10.1002/qua.21379
https://doi.org/10.1002/qua.22069
https://doi.org/10.1002/qua.25705
https://doi.org/10.1021/acs.chemrev.9b00798
https://doi.org/10.1103/physrev.185.90
https://doi.org/10.1103/physreva.2.1200
https://doi.org/10.1063/1.1494980
https://doi.org/10.1021/acs.jpclett.8b00547
https://doi.org/10.1021/jp0634297
https://doi.org/10.1021/jp0634297
https://doi.org/10.1063/1.4812257
https://doi.org/10.1021/acs.jctc.8b01120
https://doi.org/10.1063/1.5094035
https://doi.org/10.1063/1.4996038
https://doi.org/10.1063/1.4996038
https://doi.org/10.1021/acs.jpclett.7b01442
https://doi.org/10.1063/1.5119124
https://doi.org/10.1021/acs.jpclett.0c00701
https://doi.org/10.1063/5.0031019
https://doi.org/10.1021/acs.jpclett.1c00564
https://doi.org/10.1021/acs.accounts.1c00516
https://doi.org/10.1063/1.5143371
https://doi.org/10.1063/5.0014001
https://doi.org/10.1021/jacs.1c12932
http://londonprogram.org
https://doi.org/10.1063/1.5040353
https://doi.org/10.1063/1.5099093
https://doi.org/10.1063/1.5099093
http://arxiv.org/abs/2212.10246
https://doi.org/10.1063/5.0079304
https://doi.org/10.1137/s0036144500381988
https://doi.org/10.1063/1.5029431
https://doi.org/10.1063/1.448223


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

67O. Christiansen, P. Jørgensen, and C. Hättig, Int. J. Quantum Chem. 68, 1
(1998).
68P. L. Altick and A. E. Glassgold, Phys. Rev. 133, A632 (1964).
69T. H. Dunning and V. McKoy, J. Chem. Phys. 47, 1735 (1967).
70J. Broeckhove, L. Lathouwers, E. Kesteloot, and P. van Leuven, Chem. Phys. Lett.
149, 547 (1988).
71T. Culpitt, Y. Yang, P. E. Schneider, F. Pavošević, and S. Hammes-Schiffer,
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