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ABSTRACT
A semiclassical theory of small oscillations is developed for nuclei that are subject to velocity-dependent forces in addition to the usual
interatomic forces. When the velocity-dependent forces are due to a strong magnetic field, novel effects arise—for example, the coupling of
vibrational, rotational, and translational modes. The theory is first developed using Newtonian mechanics and we provide a simple quan-
tification of the coupling between these types of modes. We also discuss the mathematical structure of the problem, which turns out to be
a quadratic eigenvalue problem rather than a standard eigenvalue problem. The theory is then re-derived using the Hamiltonian formalism,
which brings additional insight, including a close analogy to the quantum-mechanical treatment of the problem. Finally, we provide numerical
examples for the H2, HT, and HCN molecules in a strong magnetic field.
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I. INTRODUCTION
Many aspects of theoretical chemistry can be understood in

terms of the semiclassical notion of a potential energy surface.
Most importantly, equilibrium structures correspond to potential
energy minima, while the curvature in different directions deter-
mines the molecular vibrational frequencies. These frequencies, in
turn, are important for infrared spectroscopy and thermodynamical
properties.

This simple picture derived from the potential energy surface
needs to be modified when the nuclei are subject to velocity-
dependent forces: there is then a distinction between the curvature
of the potential energy and dynamical frequencies squared, as noted
in a previous study.1 We are here interested in the velocity depen-
dence that enters in the form of the Lorentz force due to an external
magnetic field. A sufficiently strong magnetic field has profound
effects on the electronic structure and the potential energy sur-
face. Chemical bonding is affected1,2 and even many otherwise
unbound one-electron ions become bound in a strong field.3 More-
over, the center-of-mass motion becomes coupled to the internal
motion and the Born–Oppenheimer approximation becomes less
accurate.4–7 Most such effects are beyond the scope of this work.
However, there is an important dynamical screening effect wherein
the electrons partially shield the nuclei from the Lorentz forces

due to the external field. A consistent semiclassical picture that
takes this screening into account is that the electrons give rise not
only to a Born–Oppenheimer scalar potential, as in standard treat-
ments, but also a Born–Oppenheimer vector potential. The latter
turns out to be the geometric vector potential associated with the
Berry phase.8–13

In Sec. II, we show how velocity-dependent forces modify the
standard eigenvalue problem (H − ω2M)η̂ = 0, from which the mass
matrix M and molecular Hessian H determine vibrational frequen-
cies ω and modes η̂. The modified problem contains a rotational
term that couples translations, rotations, and vibrations. Because
of this term, the modified problem is no longer a standard eigen-
value problem, but rather what is known as a quadratic eigenvalue
problem. In Sec. III, the theory is considered in the Hamiltonian
formalism, yielding a new formulation and a close analogy to quan-
tum excitation energies. In Sec. IV, we provide several numerical
illustrations of physical effects that arise due to the new term.

II. THEORY
Let B(s) = ∇ ×A(s) denote the external magnetic field and

A(s) its magnetic vector potential at position s. We adopt a semiclas-
sical picture9,10,12 where the electrons are fully quantum mechanical
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and the electronic state ψ(r; R) depends parametrically on the clas-
sical nuclear positions R (and also on B). Here, r = (r1, . . . , rn)

collectively denotes all electron coordinates and R = (R1, . . . , RN)

all nuclear coordinates. The Born–Oppenheimer scalar potential, or
the potential energy surface, is given by (in atomic units)

v(R) = ∑
I<J

qIqJ

∣RI − RJ ∣
+ ⟨ψ∣Hel∣ψ⟩, (1)

where qI is the nuclear charge and Hel is the electronic Hamiltonian.
The electronic Hamiltonian Hel and wave function ψ both depend
parametrically on R, but for ease of notation, this dependence is sup-
pressed. The Born–Oppenheimer vector potential, or the geometric
vector potential, is given by

χI(R) = −i∫ ψ∗
∂ψ
∂RI

dr. (2)

Note that v(R) and χI(R) depend on all nuclear coordinates jointly
and the latter on an additional nuclear index. The sensitivity of the
electronic state to geometric perturbations can be quantified by the
tensor

ΞIJ(R) = ∫
∂ψ
∂RI
(
∂ψ
∂RJ
)

†

dr. (3)

The Berry curvature is defined in terms of χI as

Ωint
Iα,Jβ =

∂χIα

∂RJβ
−

∂χJβ

∂RIα
= −iΞIα,Jβ + iΞJβ,Iα (4)

and coincides with the anti-symmetric part of the tensor Ξ that
quantifies the sensitivity to rotational perturbations of the 3N
dimensional vector R. (The middle expression gives rise to second-
order derivatives of ψ, which can be shown to cancel.10) For a single
nucleus (N = 1), the Berry curvature contains exactly the same ele-
ments as the curl ∇ × χI=1, only arranged as a skew-symmetric
matrix rather than as a vector. For a system of several nuclei, it is
a multi-dimensional generalization of the three-dimensional curl.

In the nuclear Hamiltonian, the geometric vector potential χI
appears as a correction to the external magnetic vector potential, and
it modifies the nuclear momenta and kinetic energy.8–10 Newton’s
equation of motion, supplemented by the Berry screening force, now
takes the form10,12

mIR̈I = −
∂v(R)
∂RI

+ qIṘI × B(RI) +∑
J
Ωint

IJ (R)ṘJ , (5)

where mI is the mass of nucleus I. The Lorentz force has a more
specific form than the Berry screening force; therefore, we absorb the
former into the latter. In component form, the Lorentz force is given
by FL;Iα = qIϵαβγṘIβBγ(RI), where ϵαβγ is the Levi–Civita symbol and
summation over β, γ is implied. Defining

ΩIα,Jβ(R) = qIδIJ ϵαβγ Bγ(R) +Ωint
Iα,Jβ(R) (6)

and the mass matrix MIα,Jβ = qαβδIJmI , the equation of motion is
compactly expressed in terms of 3N × 3N matrices as

MR̈ = −
∂v(R)
∂R

+Ω(R) Ṙ. (7)

We note that the Berry curvature is a real-valued antisymmetric
3N × 3N matrix, ΩT

= −Ω.

A. Rigid motion and translational–rotational coupling
Before specializing the theory to small oscillations, we consider

a different special case. Suppose that the motion consists purely of
rigid translations and rigid rotations but no vibrations. All velocities
are then determined by two parameters—the center-of-mass velocity
u = Ṙcm and the angular-velocity vector ν—and are given by

ṘI = u + ν × ΔRI , (8)

where ΔRI = RI − Rcm are the nuclear coordinates relative to the
center of mass. For a uniform magnetic field, we obtain by summing
over all nuclei in Eq. (5) and using the expression in Eq. (8) for the
nuclear velocities, the equations

∑
I

mIR̈I = ∑
I

qI(u + ν × ΔRI) × B +∑
IJ
Ωint

IJ (u + ν × ΔRJ), (9)

assuming that the potential energy surface is translationally invari-
ant, ∑I ∂v(R)/∂RI = 0. Next, introducing the total mass mtot, total
charge qtot, and the center of nuclear charge Rcc = (1/qtot)∑I qIRI ,
we arrive at the following expression for the translational motion of
the system:

mtotu̇ = qtot(u + ν × (Rcc − Rcm)) × B

+∑
IJ
Ωint

IJ u +∑
IJ
Ωint

IJ (ν × ΔRJ). (10)

We note that the magnetic field and the Berry curvature cou-
ple the center-of-mass motion and the angular velocity of the
system. No such coupling occurs in the absence of a magnetic
field, if (as is typical) the wave function can be chosen to be
real valued.

To obtain the corresponding equation for the angular velocity
of the system, we evaluate the torque on each nucleus by taking the
cross product of Eq. (5) with ΔRI ,

ΔRI ×mIR̈I = −ΔRI ×
∂v

∂RI
+ qIΔRI × ((u + ν × ΔRI) × B)

+∑
J
ΔRI ×Ωint

IJ (u + ν × ΔRJ). (11)

We next express the acceleration R̈I in terms of the angular velocity
by taking the time derivative of ṘI in (8), yielding

R̈I = u̇ + ν̇ × ΔRI + ν × (ν × ΔRI). (12)

Substituting this result into Eq. (11), summing over all nuclei,
introducing the moment-of-inertia tensor I and the electrical
quadrupole moment tensor Q given by

I = ∑
I

mI(∣ΔRI ∣
2I − ΔRIΔRT

I ), (13)

Q = ∑
I

qI(∣ΔRI ∣
2I − ΔRIΔRT

I ), (14)

J. Chem. Phys. 158, 124124 (2023); doi: 10.1063/5.0139684 158, 124124-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

and assuming that the potential energy surface gives rise to no net
torque,∑I mIΔRI × ∂v/∂RI = 0, we obtain

I ν̇ + (Iν) × ν = qtot(Rcc − Rcm) × (u × B) − (QB) × ν

+∑
IJ
ΔRI ×Ωint

IJ (u + ν × ΔRJ). (15)

This equation determines the angular acceleration ν̇ or, if one
prefers, the (closely related) time derivative of the angular momen-
tum. It is a form of Euler’s rigid body equation of motion,
supplemented with the effects of the Berry screening force.

The coupling between the translational and rotational equa-
tions of motion in Eqs. (10) and (15), respectively, becomes more
transparent by mapping one of the vectors in a cross product to a
skew symmetric matrix according to

s × t = [s]×t = −[t]×s, (16)

in the notation

[s]× =

⎛
⎜
⎜
⎜
⎜
⎝

0 −s3 s2

s3 0 −s1

−s2 s1 0

⎞
⎟
⎟
⎟
⎟
⎠

, s = (s1, s2, s3). (17)

Rewriting Eqs. (10) and (15) and introducing the 3 × 3
translational–rotational coupling matrix

G = qtot[B]×[Rcc − Rcm]× −∑
IJ
Ωint

IJ [ΔRJ]×, (18)

Newton’s equation for center-of-mass motion becomes

mtotu̇ = −qtotB × u +∑
IJ
Ωint

IJ u +Gν, (19)

while Euler’s equation for rotation about the center of mass becomes

I ν̇ + (Iν) × ν = −(QB) × ν −∑
IJ
[ΔRI]×Ωint

IJ [ΔRJ]×ν−GTu. (20)

From Eqs. (10) and (19), it is clear that the center-of-mass
acceleration is affected by the internal rotation ν. The strength of
this coupling is proportional to the difference between the center
of charge and the center of mass as well as to the magnetic field,
although it may be partially counterbalanced by the Berry curvature
term. Likewise, from Eqs. (15) and (20), it is clear that the angular
acceleration of the internal rotation is affected by the center-of-
mass motion. Again, the coupling is proportional to the difference
between the center of charge and the center of mass as well as to the
magnetic field, and it may be counterbalanced by the effect of the
Berry curvature.

B. Equation of motion for small oscillations
Next, we choose the initial position to be a local minimum

R0 on the potential energy surface v(R) so that ∂v/∂R = 0. We
assume that all time dependence is captured by linear motion and
an oscillatory displacement ϵη(t) that is small enough for our below
approximations to be valid

R(t) = R0 + Ṙ0t + ϵη(t). (21)

Denoting the Hessian and the term arising from geometrical
gradients of the Berry curvature tensor at R = R0 by

HIα,Jβ =
∂2v(R)
∂RIα∂RJβ

∣

R=R0

, (22)

ΛIα,Jβ = ∑
Kγ

∂ΩIα,Kγ(R)
∂RJβ

∣

R=R0

Ṙ0;Kγ, (23)

and letting Ω = Ω(R0), we may write the equations of motion in
Eq. (7) to first order in ϵ in the manner

Mη̈ = (Λ −H)η +Ωη̇. (24)

Remarkably, the gradients of Ω(R) couple with the linear motion
Ṙ0 to produce a correction to the Hessian. In what follows, we
assume that this correction vanishes, either becauseΩ(R) is approx-
imately constant around R = R0 + Ṙ0t + ϵη or because there is no
linear motion, Ṙ0 = 0.

A Fourier transformation of Eq. (24) with Λ = 0 yields

(H − iωΩ − ω2M)η̂(ω) = 0, (25)

or, equivalently,

(H̃ − iωΩ̃ − ω2I) ζ̂(ω) = 0, (26)

in terms of the mass-weighted Hessian and mass-weighted Berry
curvature,

H̃ =M−1/2HM−1/2, (27)

Ω̃ =M−1/2ΩM−1/2, (28)

and ζ̂(ω) =M1/2η̂(ω). Because ω enters both linearly and quadrat-
ically, these equations are instances of the quadratic eigenvalue
problem (QEP)14 rather than of a standard eigenvalue problem.
In principle, even the usual vibrational eigenvalue problem with-
out velocity-dependent forces, Hη̂ = ω2Mη̂, is a QEP since ω enters
quadratically. However, it is trivially re-expressed as a standard
eigenvalue problem of the same dimension by introducing λ = ω2.

A general QEP can be transformed into an equivalent standard
eigenvalue problem of doubled dimension. Such a transformation is
said to linearize the QEP. There are many ways of linearizing a QEP
and here we illustrate one of them. By introducing a new variable for
the velocity, γ(t) = η̇(t), the equation of motion can be written in a
form that is first-order in time,

γ = η̇, (29)

Mγ̇ = −Hη +Ωγ. (30)

In the frequency domain, the corresponding system is

γ̂(ω) = iωη̂(ω), (31)

iωMγ̂(ω) = −Hη̂(ω) +Ωγ̂(ω). (32)
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Finally, these equations can be rearranged into a generalized
eigenvalue problem,

⎛
⎜
⎝

0 I

−H Ω

⎞
⎟
⎠

⎛
⎜
⎝

η̂

γ̂

⎞
⎟
⎠
= iω
⎛
⎜
⎝

I 0

0 M

⎞
⎟
⎠

⎛
⎜
⎝

η̂

γ̂

⎞
⎟
⎠

. (33)

Alternatively, in terms of the mass-weighted quantities ζ =M1/2η
and ξ = ζ̇ =M1/2η̇, we obtain the standard eigenvalue problem,

⎛
⎜
⎝

0 I

−H̃ Ω̃

⎞
⎟
⎠

⎛
⎜
⎝

ζ̂

ξ̂

⎞
⎟
⎠
= iω
⎛
⎜
⎝

ζ̂

ξ̂

⎞
⎟
⎠

. (34)

Compared to a standard eigenvalue problem of the same dimen-
sion, a quadratic eigenvalue problem has twice as many eigenvalues,
although two distinct eigenvalues may share the same eigenvector.
Solving one of the quadratic eigenvalue problems in Eqs. (25) and
(26) of dimension 3N or one of the standard eigenvalue problems in
Eqs. (33) and (34) of doubled dimension 6N yields a discrete set of
6N dynamical frequencies ωk and oscillatory modes η̂k =M−1/2ζ̂k.

Returning to the original QEP, we note three characterizations
of the eigenmodes. First, because the matrices H,Ω, M are all real,
taking the complex conjugate of Eq. (25) leads to the conclusion that
the eigenmodes come in complex conjugated pairs: If η̂k is a solution
with frequency ωk, then η̂∗k is also a solution with frequency −ω∗k . For
simplicity, we restrict attention to real frequencies from now on and,
thus, expect η̂k(ωk) = η̂k(−ωk)

∗ to hold.
Second, if also the eigenmode η̂k is real, then it satisfies the

following two equations:

(H − ω2
kM)η̂k = 0, (35)

ωkΩη̂k = 0, (36)

separately. Hence, real modes must either have zero frequency ωk = 0
or belong to the null space of Ω. Moreover, real modes must also be
solutions of a vibrational problem without velocity-dependent forces.

Third, some modes have two distinct frequencies. Equivalently,
suppose the modes are ordered so that ω1 and ω2 share the same
mode η̂ = η̂1 = η̂2. This mode satisfies

(H − iω1Ω − ω2
1M)η̂ = 0, (37)

(H − iω2Ω − ω2
2M)η̂ = 0, (38)

simultaneously. Subtracting one equation from the other and
dividing by ω2 − ω1 ≠ 0, we obtain

(iΩ + (ω1 + ω2)M)η̂ = 0. (39)

Hence, eigenmodes with more than one frequency must be generalized
eigenvectors of Ω. Moreover, if the corresponding eigenvalue is differ-
ent from zero (i.e., if ω1 + ω2 ≠ 0), then the eigenmode cannot be real
valued.

Regarding distinct frequencies that share the same eigenvec-
tor, we stress that it is the pair of a frequency and an eigenvector
that together determine the dynamics in the time domain—whereas

the pair (ω1, η̂) corresponds to η1(t) = 2 Re(η̂eiω1t
), the pair (ω2, η̂)

corresponds to η2(t) = 2 Re(η̂eiω2t
).

C. A frequency-dependent orthogonality property
The standard vibrational problem without velocity-dependent

forces yields 3N normal modes that are orthogonal with the mass
tensor M as the metric. The QEP yields 6N modes η̂k and it is imme-
diately clear that they cannot all be orthogonal. Projecting Eq. (25)
from the right by a different mode yields

η̂†
l (H − iωkΩ − ω

2
kM)η̂k = 0, (40)

and taking the complex conjugate and using that ΩT
= −Ω yields

η̂†
k(H − iωkΩ − ω

2
kM)η̂l = 0. (41)

Setting k = 1, l = 2 in the first equation and k = 2, l = 1 in the second
equation and taking the difference, we now obtain

η̂†
2((ω

2
2 − ω

2
1)M + i(ω2 − ω1)Ω)η̂1 = 0. (42)

When ω1 ≠ ω2, this simplifies to

η̂†
2((ω2 + ω1)M + iΩ)η̂1 = 0. (43)

For real modes, we may discard the Ω term and recover the usual
orthogonality property. However, complex modes are, in general,
not orthogonal in the metric M nor in any other fixed metric.

D. Configuration-space rotations and rovibrational
coupling

In the time domain, Eq. (39) corresponds to

Mη̈ = Ωη̇. (44)

The same simplified equation of motion also arises in the special case
when the Hessian can be neglected, H ≈ 0. This equation of motion
can be solved explicitly since the real antisymmetric matrix Ω is a
generator of rotations in the 3N-dimensional configuration space,

η(t) =M−1/2 eΩ̃ t M1/2η(0), (45)

R(t) = R0 + ϵM−1/2 eΩ̃ t M1/2η(0), (46)

with Ω̃ =M−1/2ΩM−1/2. In general, rotations in configuration space
preserve all distances and angles in configuration space but do not
necessarily correspond to rigid rotations that preserve internuclear
distances ∣RI − RJ ∣ in three-dimensional space. Hence, even for a
vanishing Hessian, rovibrational coupling arises due to Ω.

An instructive special case arises when the Berry curvature
vanishes, Ωint

= 0, so that the external Lorentz force is the only
velocity-dependent force. Then, Ω̃IJ = (qI/mI)δIJν has a block-
diagonal structure with ναβ = ϵαβγBγ. The motion of each nucleus can
now be solved independently,

ηI(t) = e
qI
mI
νt ηI(0), (47)

RI(t) = R0;I + ϵ e
qI
mI
νt ηI(0). (48)
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As a result, each nucleus undergoes independent rotation with
an angular velocity that depends on its gyromagnetic ratio qI/mI .
For this to be a rigid rotation that preserves all pairwise dis-
tances ∣RI(t) − RJ(t)∣, the gyromagnetic ratios must be identical,
qI/mI = qJ/mJ . In addition, the nuclei must either share the same
gyrocenter, R0;I = R0;J , or all motions must be synchronized in the
sense that the initial displacements are identical, ηI(0) = ηJ(0). In
other cases, configuration-space rotations couple rigid rotations and
vibrational motion.

E. Quantification of translational, rotational,
and vibrational coupling

A mode η̂(ωk) can be decomposed into components that cor-
respond to rigid translation, rigid rotation, and internal motion,
respectively. Here, we are interested in the kinetic energies associ-
ated with these components. From Eq. (21), we obtain for the kth
mode the following Cartesian displacement of nucleus I:

RI(t) = R0;I + ϵηk;I(t), (49)

where

ηk;I(t) = η̂k;Ie
iωkt
+ η̂∗k;Ie

−iωkt. (50)

The kinetic energy of this mode is given by

Tk =
ϵ2

2∑I
mI ∣η̇k;I ∣

2
=
ϵ2ω2

k
2 ∑I

mI(2η̂∗k;I ⋅ η̂k;I − η̂k;I ⋅ η̂k;Ie
2iωkt

− η̂∗k;I ⋅ η̂
∗
k;Ie
−2iωkt

). (51)

Thus, the kinetic energy is a periodic function of time, with time
average

Tk = ϵ
2ω2

k∑
I

mI ∣η̂k;I ∣
2. (52)

Similarly, the total mechanical momentum is

Π = ϵ∑
I

mI η̇k;I

= iϵωk∑
I

mI(η̂k;Ie
iωkt
− η̂∗k;Ie

−iωkt
), (53)

and the time average of the kinetic energy due to the center-of-mass
motion is, therefore,

Tcm =
ϵ2ω2

k
mtot
∣∑

I
mI η̂ k;I∣

2

. (54)

Next, we consider the total mechanical angular momentum J rela-
tive to the center of mass Rcm of the equilibrium geometry. With the
notation ΔR0;I = R0;I − Rcm, we may write

J = ∑
I
(ΔR0;I + ϵηk;I) ×mI η̇k;I

= ∑
I
(ΔR0;I + ϵ(η̂k;Ie

iωkt
+ η̂∗k;Ie

−iωkt
))

×mI iϵωk(η̂k;Ie
iωkt
− η̂∗k;Ie

−iωkt
). (55)

Introducing the auxiliary quantity

K̂ = ∑
I

mIΔR0;I × η̂k;I , (56)

the time average of the rotational energy becomes, to second order
in ϵ,

Trot = ϵ2ω2
kK̂ † I −1K̂, (57)

where I is the moment-of-inertia tensor of Eq. (13).
As a simple measure of the degree to which a mode repre-

sents center-of-mass motion, rotation about the center of mass, and
vibration, we define the fractions,

Pcm =
Tcm

T
, (58)

Prot =
Trot

T
, (59)

Pvib =
T − Tcm − Trot

T
= 1 − Pcm − Prot, (60)

which are non-negative and add up to 1. Numerical examples are
given in Sec. IV. Whereas the interpretation of Prot is relatively
straightforward, it should be kept in mind that Pcm measures both
linear translation and cyclotron-like motion of the center of mass.
Both Prot and Pcm capture only rigid motion and the non-rigid
motion is quantified by Pvib.

III. HAMILTONIAN FORMULATION
It is straightforward to generalize the above treatment based

on Newton’s equation of motion to a Lagrangian or Hamiltonian
formulation more suitable to non-Cartesian coordinates. Here, how-
ever, we highlight different aspects of, in particular, the Hamiltonian
formulation: first, its lack of gauge invariance and, second, it leads
directly to a linearized form of the QEP.

For convenience, we let aI(R) = −qIA(RI) + χI(R) denote a
three-dimensional vector as a function of the configuration R and
a(R) denote the corresponding 3N-dimensional vector. In Cartesian
coordinates R, the nuclear Hamiltonian may then be written

H(P, R) =
1
2
(P + a(R))TM−1

(P + a(R)) + v(R). (61)

The Hamiltonian is already quadratic in the momenta P. To con-
struct an approximation that is second order in the pair (R, P),
we consider the Taylor expansion around a point R0 of vanishing
gradient ∂v/∂R. Defining

FJβ,Iα(R0) =
∂aJβ(R)
∂RIα

∣

R=R0

, (62)

SIα,Kγ(R0) = ∑
Jβ

aJβ(R)m
−1
J

∂2aJβ(R)
∂RIα∂RKγ

∣

R=R0

, (63)

we have
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v(R0 + s) ≈ v(R0) +
1
2

sTHs, (64)

a(R0 + s) ≈ a(R0) + F(R0) s, (65)

and

a(R0 + s)TM−1a(R0 + s) ≈ a(R0)
TM−1a(R0)

+ 2a(R0)
TM−1F(R0) s +

1
2

sTS(R0)s.
(66)

In terms of the 6N × 6N matrix

H[2]mat(R0) =
⎛
⎜
⎝

H + S + FTM−1F FTM−1

M−1F M−1

⎞
⎟
⎠

(67)

the Hamiltonian can now be written as

H(P, R) ≈
1
2

⎛
⎜
⎝

R − R0

P + a(R0)

⎞
⎟
⎠

T

H[2]mat

⎛
⎜
⎝

R − R0

P + a(R0)

⎞
⎟
⎠

, (68)

and Hamilton’s equations of motion take the form

⎛
⎜
⎝

Ṙ

Ṗ

⎞
⎟
⎠
=
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠

⎛
⎜
⎝

∂H/∂R

∂H/∂P

⎞
⎟
⎠

=
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠
H[2]mat

⎛
⎜
⎝

R − R0

P + a(R0)

⎞
⎟
⎠

. (69)

The ansatz R(t) = R0 + ϵη(t) and P(t) = −a(R0) + ϵκ(t) now
yields, to first order in ϵ, the equations of motion

⎛
⎜
⎝

η̇

κ̇

⎞
⎟
⎠
=
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠
H[2]mat

⎛
⎜
⎝

η

κ

⎞
⎟
⎠

. (70)

Finally, the Fourier transformation yields the eigenvalue equation

iω
⎛
⎜
⎝

η̂(ω)

κ̂(ω)

⎞
⎟
⎠
=
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠
H[2]mat

⎛
⎜
⎝

η̂(ω)

κ̂(ω)

⎞
⎟
⎠

, (71a)

or, equivalently,

−iω
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠

⎛
⎜
⎝

η̂(ω)

κ̂(ω)

⎞
⎟
⎠
= H[2]mat

⎛
⎜
⎝

η̂(ω)

κ̂(ω)

⎞
⎟
⎠

. (71b)

A change of variables first to mass-weighted coordinates and then to
α̂±(ω) =M1/2η̂(ω) ± iM−1/2κ̂(ω) produces a third equivalent form,

ω
⎛
⎜
⎝

I 0

0 −I

⎞
⎟
⎠

⎛
⎜
⎝

α̂−(ω)

α̂+(ω)

⎞
⎟
⎠
=
⎛
⎜
⎝

A B

B∗ A∗
⎞
⎟
⎠

⎛
⎜
⎝

α̂−(ω)

α̂+(ω)

⎞
⎟
⎠

, (71c)

where

A = I +M−1/2
(H + S + FTM−1F)M−1/2

− iM−1/2
(F − FT

)M−1/2, (72)

B = −I +M−1/2
(H + S + FTM−1F)M−1/2

− iM−1/2
(F + FT

)M−1/2. (73)

The formal similarity with the quantum-mechanical random-phase
approximation is striking.15

As shown above, the Hamiltonian description of small vibra-
tions yields a linearized eigenvalue problem of double dimension
already from the start. However, it has the disadvantage of being
formulated in terms of the manifestly gauge-dependent canonical
momentum PI , leading to the above matrix where the ingredients F
and S are gauge dependent too. This disadvantage can be alleviated
by performing the geometric gauge transformation

a′(R) = a(R) −
∂

∂R
(

1
2

sTF(R0) s)

= a(R) −
1
2
(F(R0) + F(R0)

T
)s, (74)

where we recall that s = R − R0. This leaves the quantity defined
in Eq. (63) unchanged [i.e., S′(R0) = S(R0)], while the first-order
derivative,

F′Jβ,Iα(R0) =
∂a′Jβ(R)
∂RIα

∣

R=R0

=
1
2

FJβ,Iα(R0) −
1
2

FIα,Jβ(R0)

=
1
2
ΩJβ,Iα(R0), (75)

has now been transformed into half the Berry curvature defined in
Eq. (6). After this geometric gauge transformation, the Hamiltonian
matrix takes the form

H ′[2]
mat (R0) =

⎛
⎜
⎜
⎝

H + S +
1
4
ΩTM−1Ω 1

2
ΩTM−1

1
2

M−1Ω M−1

⎞
⎟
⎟
⎠

, (76)

where S is the remaining gauge-dependent contribution.
In what follows, we neglect S. Noting that the original momen-

tum κ̂ is now gauge transformed into some κ̂ ′, the eigenvalue
equation is

⎛
⎜
⎝

iωη̂

iωκ̂ ′
⎞
⎟
⎠
=
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠
H ′[2]

mat

⎛
⎜
⎝

η̂

κ̂ ′
⎞
⎟
⎠

=

⎛
⎜
⎜
⎝

1
2

M−1Ωη̂ +M−1κ̂ ′

−(H +
1
4
ΩTM−1Ω)η̂ − 1

2
ΩTM−1κ̂ ′

⎞
⎟
⎟
⎠

. (77)

The upper half of this system yields κ̂ ′ = (iωM − 1
2Ω)η̂. Inserting

this into the lower half, and using the anti-symmetry ΩT
= −Ω,

yields precisely the quadratic eigenvalue problem in Eq. (25).
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A. Orthogonality properties
Consider now multiple solutions η̂k, κ̂k,ωk to the above eigen-

value problem. Projecting Eq. (71b) from the left by a different
solution yields

− iωk

⎛
⎜
⎝

η̂ l

κ̂ l

⎞
⎟
⎠

†
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠

⎛
⎜
⎝

η̂k

κ̂k

⎞
⎟
⎠
=
⎛
⎜
⎝

η̂ l

κ̂ l

⎞
⎟
⎠

†

H[2]mat

⎛
⎜
⎝

η̂k

κ̂k

⎞
⎟
⎠

, (78)

with complex conjugate

− iωk

⎛
⎜
⎝

η̂k

κ̂k

⎞
⎟
⎠

†
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠

⎛
⎜
⎝

η̂l

κ̂l

⎞
⎟
⎠
=
⎛
⎜
⎝

η̂ k

κ̂ k

⎞
⎟
⎠

†

H[2]mat

⎛
⎜
⎝

η̂l

κ̂l

⎞
⎟
⎠

. (79)

Taking the difference between the first equation with k = 1 and l = 2
and the second equation with k = 2 and l = 1, we obtain

(ω1 − ω2)
⎛
⎜
⎝

η̂ 2

κ̂ 2

⎞
⎟
⎠

†
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠

⎛
⎜
⎝

η̂1

κ̂1

⎞
⎟
⎠
= 0. (80)

Repeating the above derivation but with Hermitian conjugates
replaced by matrix transposition also yields

(ω1 + ω2)
⎛
⎜
⎝

η̂ 2

κ̂ 2

⎞
⎟
⎠

T
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠

⎛
⎜
⎝

η̂1

κ̂1

⎞
⎟
⎠
= 0. (81)

Hence, when the frequencies satisfy ω2
1 ≠ ω2

2, we obtain two simul-
taneous orthogonality properties. When the frequencies satisfy
either ω1 = ω2 ≠ 0 or ω1 = −ω2 ≠ 0, only one of the properties is
informative.

B. Quantization and interpretation of frequencies
as excitation energies

The classical theory of vibrations derived above reduces to the
standard one in the limit Ω→ 0 of vanishing velocity-dependent
forces. Even though the calculated frequencies are derived as dynam-
ical resonance frequencies, they are usually interpreted as excitation
energies. In the case Ω = 0, this interpretation is justified by the
analogy between a single classical and quantum harmonic oscilla-
tor. The case of 3N coupled harmonic oscillators may be reduced to
that of a single oscillator by exploiting the fact that the 3N normal
coordinates are orthogonal and diagonalize H[2]mat, resulting in 3N
decoupled oscillators.16,17 When Ω ≠ 0, the orthogonality properties
in Sec. III A are sufficient to achieve such a decoupling, despite the
off-diagonal blocks of H[2]mat and the lack of orthogonality of the spa-
tial components η̂k discussed in Sec. II C. However, below we follow
an alternative approach that circumvents the need for decoupling
the oscillators18 and that yields complementary insights.

To this end, consider the quantized analog of H, obtained by
replacing the classical canonical momentum PI by the Hermitian
operator P̂I = −i∂/∂RI . Collecting all positions and momenta in a
single column vector

ẑ =
⎛
⎜
⎝

R − R0

P̂ + a(R0)

⎞
⎟
⎠

, (82)

the quantized Hamiltonian becomes

ĤQ =
1
2

ẑ†H[2]matẑ. (83)

With an additional binary index indicating the upper or lower
half of ẑ, we index the 6N components according to ẑ0Iα = RIα
and ẑ1Iα = P̂Iα. For compactness, we introduce single symbols
a = (σ, I,α), b = (σ′, J,β), and so on, for such composite indices.
Now, defining a matrix J with elements J ab = −i[ẑa, ẑb], we use
the canonical commutation relations, [Ra, P̂b] = iδab, to deduce the
matrix form

J =
⎛
⎜
⎝

0 I

−I 0

⎞
⎟
⎠

, (84)

which is identical to the matrix that first appeared in Eq. (69) above.
Let us now seek a ladder operator of the form X̂ = ξcẑc (sum-

mation implied over repeated composite indices) and with the
property

[ĤQ, X̂] = ωX̂. (85)

When this operator acts on an energy eigenstate ∣0⟩, satisfying
ĤQ∣0⟩ = E0∣0⟩, it produces a new eigenstate with an energy shifted
by ω,

ĤQX̂∣0⟩ = (X̂ĤQ + [ĤQ, X̂])∣0⟩ = (E0 + ω)X̂∣0⟩. (86)

Writing out the commutation relation in Eq. (85) in component
form, this relation becomes

ωξeẑe =
1
2
[H [2]

mat;abẑaẑb, ξcẑc]

=
1
2
H [2]

mat;ab(ξcẑa[ẑb, ẑc] + ξc[ẑa, ẑc]zb)

=
1
2
H [2]

mat;ab(ξcẑaiJ bc + ξciJ acẑb). (87)

Renaming dummy summation indices and using the fact that H[2]mat
is a symmetric matrix, we may now verify the matrix eigenvalue
equation

iH[2]mat J ξ = ωξ. (88)

After a change of variables ξ′ = J ξ, we finally obtain

H[2]matξ
′
= iωJ ξ′. (89)

This eigenvalue equation is formally identical to the complex
conjugate of Eq. (71b) and we have

ξ′ ∝
⎛
⎜
⎝

η̂∗

κ̂∗
⎞
⎟
⎠

, (90)

where the quantities on the right-hand side are classical Fourier coef-
ficients rather than quantum-mechanical operators. In summary, the
same mathematical eigenvalue problem yields both (a) classical modes
with associated resonance frequencies and (b) quantum-mechanical
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ladder operators with associated energy shifts. This identification
justifies the interpretation of frequencies as excitation energies.

For two different ladder operators, X̂k and X̂l,

[X̂k, X̂l] = ξk;a[ẑa, ẑb]ξl;b = J acξ
′
k;c[ẑa, ẑb]J dbξ

′
l;d

= J acξ
′
k;ciJab J dbξ

′
l;d = −iξ′k;c J cdξ

′
l;d, (91)

which according to the orthogonality property in Eq. (81) vanishes
if ωk ≠ −ωl. Hence, ladder operators with different absolute frequen-
cies ∣ωk∣ ≠ ∣ωl∣ commute. When ωk = −ωl > 0, we have X̂k = X̂†

l and
X̂†

l X̂l is (up to normalization) the number operator for the kth mode.

IV. RESULTS
We illustrate the above theory of small oscillations for a few

molecular systems subject to strong a magnetic field. For small
molecules, atomic units are natural and we use B0 = 2.35 × 105 T
to denote the atomic unit of magnetic. All calculations were per-
formed at the Hartree–Fock level using LONDON.19,20 In particular,
its functionality for analytical geometrical gradients1 and the recent
implementation of the Berry-curvature tensor10,11 was relied on.
Standard basis-set names are prefixed by “L” to indicate that Lon-
don gauge factors21 are used and by “u” to indicate the decontraction
of primitive Gaussian functions. For a strong magnetic field, decon-
traction is useful since most basis sets were originally constructed for
zero-field situations. Hessians were computed by numerical differ-
entiation of analytical gradients.1 We used a simple symmetric finite
difference

Hab(R) ≈
1
2ϵ
(
∂v(R + ϵeb)

∂Ra
−
∂v(R − ϵeb)

∂Ra
), (92)

where ea is a unit vector along a coordinate axis in the 3N dimen-
sional configuration space. A small step of ϵ = 0.001 bohr was used
and we also ensured a very tight self-consistent field convergence.
For each system, the optimal geometry, including the optimal ori-
entation relative to the field, was determined as the minimum of
the potential-energy surface for a given field strength. The quadratic
eigenvalue problem was solved using the function polyeig in the
MATLAB package.22 The dimensions of quadratic eigenvalue prob-
lems are not large enough for numerical stability to be an issue in
this work. However, for large dimensions, one may also consider the
linearization denoted L4 in Ref. 14.

A. Singlet H2

At the RHF/Lu-aug-cc-pVTZ level of theory, the optimal bond
distance at B = 0 is R = 1.388 bohrs. By contrast, at B = B0, the opti-
mal bond distance is R = 1.219 bohrs, with the bond axis parallel to
the magnetic field. In Fig. 1, the spectrum of the hydrogen molecule
at these geometries is shown. In the absence of a field, there are trans-
lational modes with ω = 0, and a vibrational mode with ω = 4585
cm−1. There are also rotational modes that would haveω = 0 in exact
calculations, but because of numerical inaccuracies, they have small
imaginary values in our finite-difference calculations (ω = ±18i
cm−1). The sensitivity of barrier-free rotational modes to numer-
ical errors is a well-known problem for this type of calculation.23

At B = B0, the translational modes with ω = 0 remain, but the rota-
tional modes have split into two distinct frequencies ω = 1450 cm−1

FIG. 1. Spectrum of the hydrogen molecule in the singlet electronic state and the
minimum geometry parallel to the magnetic field of strength B = 0 and B = B0.
The top and bottom spectra show the tritium isotopologue HT, whereas the other
spectra are for H2. For comparison, the shaded region also displays the spectra
produced with mixed data—with Ω and v computed at different field strengths.
The vertical axis is arbitrary and for visualization purposes only.

and ω = 1560 cm−1, while the vibrational mode is substantially
stiffer, with ω = 5964 cm−1.

To investigate the relative importance of the velocity-
dependent term Ω and field-induced change in v, we computed the
spectrum with the Hessian H at B = 0 (at R = 1.388 bohrs) and Ω
at B = B0 (at R = 1.219 bohrs). We also interchanged these so that H
was obtained at B = B0 (at R = 1.219 bohrs) andΩ = 0 as it is at B = 0.
Another variant we considered was to use H at B = B0 with the bare
Lorentz force, but neglecting the Berry screening force (Ωint

= 0).
From these results, shown in the shaded part of Fig. 1, we

see that the change in frequencies is almost entirely a result of
magnetic-field effects on the potential-energy surface—in particular,
the compression of the optimal geometry with the resulting higher
curvature captured by the Hessian. The main effect of the external
Lorentz force and the Berry curvature is to split the rotational modes,
which would otherwise be degenerate atω = ±1504 cm−1. Moreover,
these degenerate modes could be chosen complex, in which case they
satisfy the relation

η̂(±1504 cm−1
) = η̂(∓1504 cm−1

)
∗. (93)

Due to the degeneracy, the modes are not uniquely determined
and we are free to choose the modes as the real and imaginary
parts of the complex modes, leading to real modes. By contrast, the
velocity-dependent forces arising from the true Ω at B = B0 break
time-reversal symmetry, leading to the situation that

η̂(+1560 cm−1
) = η̂(−1450 cm−1

)

= η̂(−1560 cm−1
)
∗
= η̂(+1450 cm−1

)
∗, (94)
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FIG. 2. Four rotational eigenvectors η̂(ω) for the H2 molecule in the singlet state
and a magnetic field of B = B0. The bond axis is indicated with a thick black line,
the real component of η̂(ω) with solid blue lines, and the imaginary component
with dotted red lines. The dynamical frequency is given in units of cm−1 for each
mode. Note that the corresponding four eigenvalues are distinct, but there are only
two unique and linearly independent eigenvectors.

which is illustrated in Fig. 2. Consequently, these rotational modes
can no longer be chosen to be real; they always have both real and
imaginary components.

The importance of the Berry curvature and the resulting screen-
ing force is illustrated in the uppermost shaded area in Fig. 1,
showing the unscreened spectrum. The unscreened spectrum is
very close to the screened spectrum except for spurious modes
at ω = ±120 cm−1, which is the cyclotron frequency qtotB/mtot for
the center of mass. These spurious modes result from the bare
Lorentz force and correspond to complex-valued linear combi-
nations of translations in the plane perpendicular to the bond
axis.

In more detail, we can order the eigenvectors so that the real-
valued η̂1 and η̂2 are two such translations, both with a vanishing
frequency ω1 = ω2 = 0, meaning that Hη̂1 = Hη̂2 = 0. The corre-
sponding spurious modes are then η̂3 = η̂1 + iη̂2 and η̂4 = η̂∗3 = η̂1
− iη̂2, with nonvanishing frequencies ω3 = −ω4 = 120 cm−1. Like the
real modes η̂1 and η̂2, they satisfy Hη̂3 = Hη̂4 = 0 but, unlike the real
modes, they also satisfy

(−iω3Ω − ω2
3M)η̂3 = 0, (95)

(−iω4Ω − ω2
4M)η̂4 = 0, (96)

with nonzero frequency. Hence, the complex linear combinations
solve two eigenvalue problems simultaneously, while the real-valued
vectors solve only one.

As shown in Fig. 1, replacing a proton with a tritium reduces
the rotational and vibrational frequencies. Even though this iso-
tope substitution breaks inversion symmetry and leads to different
gyromagnetic ratios for the two nuclei, the modes remain pure trans-
lational, pure rotational, and pure vibrational. For each mode, one
of Pcm, Prot, or Pvib is close to one and the remaining two are, thus,
close to zero. For the isotopologue HT oriented along the x axis, the
translational–rotational coupling matrix of Eq. (18) is given by

G =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0

0 −0.609 0

0 0 −0.609

⎞
⎟
⎟
⎟
⎟
⎠

, (97)

TABLE I. Dynamical frequencies ω of the singlet HT molecule in a perpendicular field
of B = B0. The next three columns show the degree of rigid center-of-mass motion,
rigid rotational motion, and vibration (positive and negative frequencies share the
same values for this system). The fourth column shows the time-averaged rotational
energy.

ω (cm−1) Pcm Prot Pvib T̄rot/ϵ2ω2

±0.00 1.000 0.000 0.000 0
±0.00 1.000 0.000 0.000 0
±0.00 1.000 0.000 0.000 0
±1192 0.000 1.000 0.000 2.2 × 103

±1265 0.000 1.000 0.000 2.2 × 103

±4870 0.000 0.000 1.000 0

with vanishing contribution from the Berry curvature. Hence, rota-
tion around the y or z axis, which are perpendicular to both
the bond axis and the magnetic field, couples to the center-of-
mass translation along the same axis. For H2, by contrast, the
whole coupling matrix vanishes, G = 0. According to the other
quantitative measures, shown for HT in Table I, the modes are
to a very high precision either purely translational, rotational, or
vibrational.

We finally note that, for both H2 and HT, the Lorentz force
on the center of mass is completely canceled by the Berry screening
force, according to the magnetic-translational sum rule,24

∑
IJ
Ωint

IJ = qtot[B]×. (98)

B. Comparison with dynamical trajectories
To assess the effects of anharmonicity, we have generated vibra-

tional spectra from Born–Oppenheimer dynamics at different initial
conditions for B = 0 and B = B0, with the inclusion of the Lorentz
force and the Berry screening force. As in previous work,12 we use
the auxiliary-coordinates-and-momenta propagator, a time step of
1 fs, and a total simulation time of 200 ps. The simulations started
from the equilibrium geometry at the given field strength with initial
kinetic energy, in units of kelvin, 0.01, 0.1, 1, 10, 100, and 300 K. For
the simulations at B = 0, we do not sample the rotational modes. The
resulting spectra for the higher kinetic energies are shown in Fig. 3;
the lowest kinetic energies yield spectra visually indistinguishable
from T = 1 K.

At sufficiently low kinetic energy, the motion is expected to
be near harmonic, whereas a higher initial kinetic energy will
probe anharmonic effects. Our results confirm this picture, with the
dynamical spectrum coinciding with the harmonic approximation
up to about 1 K. Interestingly, the anharmonic effects on the stretch-
ing vibration produce a red shift at B = 0 (see Fig. 4) but a blue
shift at B = B0. While the former effect is well known, the latter can
be understood from the observation that the covalent hydrogen σ2

g
bond becomes stiffer as the angle between the magnetic field and the
bond axis increases. Since higher temperatures allow the molecule
to explore these parts of the potential-energy surface, the averaged
frequency of the stretching mode increases.
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FIG. 3. Spectrum for singlet H2 at B = B0 obtained from Born–Oppenheimer
dynamics compared to the lines from the quadratic eigenvalue problem (vertical
black lines). The dynamical spectra differ in the initial kinetic energy, which is given
in units of kelvin.

C. Triplet H2

Although the triplet state of H2 is unbound in the absence of
a magnetic field, it becomes bound in a sufficiently strong mag-
netic field,2,25 with a preferred perpendicular orientation in the
field. The underlying mechanism for this perpendicular paramag-
netic bonding is that anti-bonding orbitals develop an orientation-
dependent angular momentum that is stabilized by the orbital
Zeeman effect.1,2,26,27 At the unrestricted Hartree–Fock (UHF)/Lu-
aug-cc-pVTZ level, the optimal bond distance at B = B0 is R = 2.709
bohrs, at the preferred perpendicular field orientation. At this field

FIG. 4. Spectrum near the stretching mode for singlet H2 at vanishing field,
B = 0, obtained from Born–Oppenheimer dynamics compared to the lines from the
quadratic eigenvalue problem (vertical black lines). The dynamical spectra differ in
the initial kinetic energy, which is given in units of kelvin.

strength, the MS = −1 component of the triplet is the ground state
of H2.

Spectra of triplet H2 and HT are shown in Fig. 5. As expected,
the H2 stretching mode of 942 cm−1 at B = B0 is much lower than
the corresponding frequency of singlet H2. The barrier-free rotation
about the field axis should have ω = 0 but our calculated result is a
small imaginary value (ω = ±6i cm−1) because of numerical inaccu-
racies. The hindered rotation in the plane spanned by the molecular
axis and the magnetic field occurs at ω = ±190 cm−1; it is not degen-
erate and the velocity-dependent force does not split this mode. As
a result, the spectra obtained with screened and unscreened Lorentz
forces are very similar; see the lower shaded area in Fig. 5. However,
as seen in the upper shaded area in Fig. 5, omission of the Berry
screening force leads to a spurious center-of-mass cyclotron mode
at ω = ±120 cm−1, since the system then behaves like a particle of
charge +2 in a magnetic field.

As given in Table II, all modes in triplet H2 are high preci-
sion pure translations, rotations, and vibrations according to our
quantification using Pcm, Pvib, and Pvib, respectively. However, while
the zero-frequency modes have a vanishing time average T̄/ϵ2ω2

= 0
(this quantity can be calculated without division by zero), the
stretching mode has a small rotational energy T̄/ϵ2ω2

= 0.3 that
is not numerical noise. This amount should be compared to
T̄/ϵ2ω2

= 1.8 × 103 for the rotational modes.
For the isotopologue HT oriented along the x axis and the

magnetic field along the z axis, the translational–rotational coupling
matrix is given by

G =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 1.354

0 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

, (99)

J. Chem. Phys. 158, 124124 (2023); doi: 10.1063/5.0139684 158, 124124-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Spectrum of the hydrogen molecule in the triplet electronic state and the
minimum geometry perpendicular to the magnetic field of strength B = B0. The top
spectrum shows the tritium isotopologue HT, whereas the other spectra are for H2.
For comparison, the shaded region also displays the spectra produced by zeroing
out either the full Ω = 0 or the Berry curvature contribution Ωint = 0. The vertical
axis is arbitrary and for visualization purposes only.

with vanishing contribution from the Berry curvature. Hence, rota-
tion about the z axis couples to center-of-mass translation along the
x axis. For H2, the coupling matrix vanishes, G = 0. For both H2 and
HT, the bare Lorentz force on the center of mass is canceled by the
Berry screening force; see Eq. (98).

TABLE II. Dynamical frequencies ω of triplet H2 and HT in a perpendicular field of
B = B0. The next three columns show the degree of rigid center-of-mass motion, rigid
rotational motion, and vibration (positive and negative frequencies share the same
values for this system). The fourth column shows the time-averaged rotational energy.
The fourth line for both H2 and HT are barrier-free rotational modes and are reported
as 0 since our calculated small, non-zero value is a numerical artifact.

ω (cm−1) Pcm Prot Pvib T̄rot/ϵ2ω2

H2

±0 1.000 0.000 0.000 0
±0 1.000 0.000 −0.000 0
±0 1.000 0.000 0.000 0
±0 0.000 1.000 0.000 1.8 × 103

±190 0.000 1.000 −0.000 1.8 × 103

±942 0.000 0.000 1.000 0.30

HT

±0 1.000 0.000 0.000 0
±0 1.000 0.000 0.000 0
±0 1.000 0.000 0.000 0
±0 0.000 1.000 0.000 2.2 × 103

±155 0.000 1.000 0.000 2.2 × 103

±769 0.000 0.000 1.000 0.24

D. Singlet HCN
Hydrogen cyanide has been investigated at the RHF/Lu-cc-

pVDZ level. In a strong field of B = 0.3B0, HCN adopts a linear
geometry perpendicular to the field, with C–H and C–N bond dis-
tances of 1.964 and 2.153 bohrs, respectively. All 18 dynamical fre-
quencies are given in Table III along with the degree of translational,
rotational, and vibrational motion.

For this system, numerical errors are noticeable in our finite-
difference procedure for computing the Hessian, probably because
the energy and forces respond very differently to vibrational and
rotational modes, respectively. Our numerical Hessian has a non-
symmetric component on the order of ∥H −HT

∥F = 5.9 × 10−8

a.u. In addition, numerical errors manifest themselves in that
some frequencies with an absolute value below 0.03 cm−1 are
imaginary and that a barrier-free rotational mode has a calcu-
lated value of 1.3 cm−1. For this reason, we report frequencies
∣ω∣ ≤ 1.3 cm−1 as 0.

The modes listed in the table are visualized in Fig. 6. Sev-
eral modes are mixed rather than pure translations, rotations, or
vibrations—for example, the barrier-free rotation about the field axis
includes a substantial degree of center-of-mass motion, although
the proportion is very sensitive to the numerical accuracy of
the calculations. Moreover, the rotational mode at ω = 172 cm−1,
which corresponds to rotation around an axis perpendicular to
both the magnetic field and molecular axis, has a 5.7% vibra-
tional character. Similarly, the vibrational mode with ω = 443 cm−1,
corresponding to a change in the bond angle by displacing
atoms along the magnetic field axis, has a 5.7% rotational
character.

As for singlet and triplet H2, the Lorentz force on the center
of mass is completely canceled by the Berry screening force [see
Eq. (98)]. The translational–rotational coupling matrix has con-
tributions both from the external magnetic field and the Berry
curvature. With the molecular axis aligned to the x axis and
the magnetic field to the z axis, it is obtained from these two
contributions as

TABLE III. Dynamical frequencies ω of the HCN molecule in a perpendicular field of
B = 0.3B0. The next three columns show the degree of rigid center-of-mass motion,
rigid rotational motion, and vibration (positive and negative frequencies share the
same values for this system). The fourth column shows the time-averaged rotational
energy. The numbers marked with asterisks are very sensitive to numerical accuracy
and likely not converged.

ω (cm−1) Pcm Prot Pvib T̄rot/ϵ2ω2

±0 1.000 0.000 0.000 0
±0 1.000 0.000 0.000 0
±0 0.996 0.004 0.000 58
±0 0.468∗ 0.532∗ 0.000 4.8 × 103

±172 0.000 0.943 0.057 3.5 × 103

±286 0.000 0.000 1.000 4.5 × 10−5

±443 0.000 0.057 0.943 190
±2207 0.000 0.000 1.000 1.3 × 10−3

±3762 0.000 0.000 1.000 1.2 × 10−2
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FIG. 6. Oscillatory modes of the HCN molecule oriented perpendicular to a field of B = 0.3B0. The real part of each mode is indicated with blue lines. The length
scale for these lines is arbitrary; however, the relative lengths within and between modes are meaningful. The dynamical frequency ω in cm−1 is also given for
each mode.

G =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0.451

0 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎝

0 0 −0.337

0 0 0

0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

. (100)

This results in a coupling between rigid rotations about the magnetic
field (z axis) and center-of-mass translations along the molecular
axis (x axis). This coupling is seen in the mode with ω = ±0, which
is predominantly translation along the molecular axis but with 0.4%
rotational character.

V. CONCLUSIONS
We have developed the theory of small oscillations in molecules

subject to velocity-dependent forces. Specifically, when the velocity-
dependent forces are the Lorentz forces in an external magnetic
field and the Berry screening force,8–10 several novel effects arise.
For example, the internal motion can no longer be considered in
isolation and there is coupling between rigid translations, rigid rota-

tions, and pure vibrations. Also, rotational modes are split when the
clockwise and counterclockwise rotations are no longer symmetry
equivalent but subject to different magnetic forces.

In mathematical terms, the dynamical frequencies are no longer
obtained from a standard eigenvalue problem involving the mass
matrix and the geometric Hessian. Instead, the frequencies are
obtained from a quadratic eigenvalue problem, with a more com-
plicated structure of eigenvectors than a standard eigenvalue prob-
lem. We also discussed linearization—that is, the conversion of the
quadratic eigenvalue problem to a standard eigenvalue problem of
double dimension. The most interesting linearization is obtained
from Hamilton’s equation of motion. Although this work is focused
on the classical dynamics of nuclei, the Hamiltonian formulation
admits a close analogy with the quantum-mechanical treatment of
vibrations, allowing us to verify that the classical frequencies can be
interpreted as excitation energies.

The developed theory has been illustrated by numerical results
for the hydrogen molecule and hydrogen cyanide in a strong mag-
netic field. Although the effect of the velocity-dependent forces is,
in general, complex, its main effect is to split rotational modes. By
contrast, the effect of the magnetic field via the potential-energy
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surface is to blue shift stretching frequencies and introduces hin-
dered rotations. Whereas harmonic stretching frequencies are typ-
ically blue shifted relative to the (true) anharmonic frequencies in
the absence of the magnetic field, we observe the opposite effect
for singlet H2 in a strong magnetic field, for which the anharmonic
stretching frequency is higher than the corresponding harmonic
frequency.

The coupling of translational, rotational, and vibrational
motions is also seen in our numerical results, although the magni-
tude of the coupling is small. This is likely due to the relatively simple
structure of the coupling matrix G in the above linear molecules.
Because our quantification of the coupling is energy based, the small
coupling could also be due to modes of different types having kinetic
energies of different orders of magnitude. Larger molecules with
lower symmetry may display such couplings in a larger percentage
of the modes.
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