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Chapter 22
Lieb variation principle in density-functional theory

Trygve Helgaker and Andrew M. Teale

Lieb’s convex formulation of density-functional theory is presented in a pedagogical manner,
emphasizing its connection to Hohenberg—Kohn theory and to Levy’s constrained-search the-
ory. The Hohenberg—Kohn and Lieb variation principles are discussed, highlighting the dual
relationship between the ground-state energy and the universal density functional. Applications
of the Lieb variation principle are reviewed, demonstrating how it may be utilized to calculate
the Kohn—Sham potential of atoms and molecules, to study the exchange—correlation func-
tional and the adiabatic connection by high-precision many-body methods, and to calculate the
exchange—correlation hole and energy densities of atoms and molecules.

Density-functional theory (DFT) is a hugely successful and powerful theory, under-
lying nearly all electronic-structure calculations of molecules and materials in chem-
istry and physics today. It is also a very beautiful theory — an elegant application of
convex analysis to electronic-structure theory, predicated on the simple observation
that the ground-state electronic energy of an atom, molecule, or material is continu-
ous and concave in the external potential, as realized in 1983 by Lieb in his seminal
work “Density functionals for Coulomb systems” [21]. Unfortunately, nearly forty
years later, Lieb’s convex formulation of DFT is still not widely appreciated among
the practitioners of DFT or even among many of its developers. Likewise, the teach-
ing of DFT is still mostly based on the Hohenberg—Kohn theorem [14] and Levy’s
constrained-search theory [20]. This is a pity since Lieb’s convex, unifying formu-
lation of DFT is both accessible and transparent — and, in our experience, likely to
intrigue students.

Lieb’s theory does not only give valuable insight into DFT. It also furnishes
us with a practical tool for computation: the Lieb variation principle, according to
which we may calculate to high accuracy, for any given electron density, the corre-
sponding external potential and the universal density functional, thereby providing
us with a practical realization of the Hohenberg—Kohn mapping from densities to
potentials. Furthermore, it allows us to study the adiabatic connection and to calcu-

2020 Mathematics Subject Classification. 81V55.
Keywords. Density-functional theory, Hohenberg—Kohn variation principle, Lieb variation
principle, universal density functional theory, Hohenberg—Kohn theorem.
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T. Helgaker and A. M. Teale 528

late the universal density functional of DFT using high-precision quantum-chemical
methods, providing both insight and valuable benchmark data for the development of
approximate density functionals.

The bulk of this chapter consists of two parts. We begin in Section 1 by reviewing
Lieb’s convex formulation of DFT, emphasizing its relationship to Hohenberg—Kohn
theory and to Levy’s constrained-search theory. Next, in Section 2, we review and
illustrate the Lieb variation principle as a computational tool in DFT, with appli-
cations to both Kohn—Sham theory and orbital-free DFT. Section 3 contains some
concluding remarks.

1 Lieb’s convex formulation of density-functional theory

The following presentation of Lieb’s formulation of DFT is intended to be an informal
introduction rather than a rigorous exposition of the theory. Concepts and elements
of convex analysis are introduced as needed, in a hopefully self-contained manner.
For an accessible, rigorous treatment convex analysis, we highly recommend the
introductory text of van Tiel [38].

1.1 Hohenberg-Kohn theorem

The Hamiltonian of an atomic or molecular system of N electrons in an external
potential v can be written in the form

N
Hw)=T+ W+ vm). (1)
i=1

Whereas the external potential v varies from system to system, the kinetic operator

T = » ZVZ
T 2m, Ti

and the electron-repulsion operator

2 N i-1

W= 4;80 ZZ I =

i=1j=1

are the same for all N -electron systems. We are particularly interested in those poten-
tials v that support an electronic ground state and denote the set of these potentials
by V.
For a given v € Vy, the ground-state energy FE(v) is obtained by solving the
Schrodinger equation,
H@)¥(x;) = E(v)¥(x;).
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Lieb variation principle in density-functional theory 529

Its solution is a complicated many-body problem, the wave function ¥(x;) depending
on the spatial and spin coordinates x; = (r;, 0;) of all electrons. By contrast, the
associated ground-state density is a much simpler quantity, depending only on three
spatial coordinates:

p(r) :/|‘~IJ(r,J,x2,...,XN)|2dodx2---de,

where we interpret the integration over spin coordinates as a summation over « and
spins. According to the Hohenberg—Kohn theorem, we may use the density as a fun-
damental variable in place of the wave function when studying atomic and molecular
systems [14]:

“Thus v(r) is (to within a constant) a unique functional of p(r); since, in
turn, v(r) fixes H we see that the full many-particle ground state is a unique
Sfunctional of p(r).”

Equipped with this theorem, we can set up the Hohenberg—Kohn mapping from
ground-state densities to ground-state wave functions via the external potential and
the Hamiltonian:

p= v, > H(p) = W,

A density that is the ground-state density for some potential v € Vy is said to be
v-representable and the set of all v-representable densities is denoted by A .

The Hohenberg—Kohn theorem (1964) has played an enormously important role
in theoretical chemistry — indeed, it is typically viewed as the cornerstone of DFT,
taught in all introductions to DFT along with Levy’s constrained-search theory (1979).
At the same time, the Hohenberg—Kohn theorem may appear almost mysterious and
difficult to understand intuitively. Although Levy’s constrained-search formulation
brings clarity, the underlying structure and beauty of DFT is best appreciated from
the point of view Lieb’s convex formulation of the theory (1983).

It is interesting to note that many of the elements or concepts of Lieb’s theory
were already present in the early work of Hohenberg and Kohn but were not picked
up on and developed further at the time. We will here highlight these connections,
beginning with the subgradient inequality of the ground-state energy.

1.2 Subgradient inequality of the ground-state energy

As part of the proof of the Hohenberg—Kohn theorem [14], the following subgradient
inequality of the ground-state energy at v € Vy was established:

Ew)<EW)+m—v|py) forallu ¢ v+ R,

Ew)=EW) +@m—v]|py) forallu € v+ R. @)
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E

<q’(l‘H(Ul)‘\PU> = E(L'n) + (1'1 - l‘n‘/)n)

(U4|H (01)|W1) = E(v1)

P{(WolH (vo)|Wo) = Evo)

vy < 0 v <0 v =0

Figure 1. The concavity of the ground-state energy v — E(v) in the potential v (blue line),
assuming that the potentials vg, v; € Vxn have ground-state wave functions Wo and W1, respec-
tively. As the potential changes from vg to v; with the ground-state wave function ¥¢ fixed
along the red line, the energy changes linearly. When the wave function relaxes from Wq to
the ground-state wave function W; at vy, the ground-state energy is lowered, generating a con-
cave curve v — E(v). The slope of the tangent to E at vg is the density of the ground-state
wave function Wq at vg. In the terminology of convex analysis, the ground-state density pg is
the “subgradient” of the ground-state at the potential vg. The “subgradient inequality” in equa-
tion (2) therefore expresses the notion that the straight red line in the plot is a tangent to the
concave blue curve.

Here p, € 4y is a ground-state density associated with H(v) and we use the short-
hand notation

(ulp) = / u(0)p(r) dr

to denote the interaction of u with p. An intuitive understanding of the subgradi-
ent inequality can be obtained from Figure 1, which shows how the inequality arises
from the Rayleigh—Ritz variation principle and the linearity of the Hamiltonian in the
potential. As seen in the figure, the subgradient inequality is a consequence of the
concavity of the ground-state energy. Geometrically speaking, a function is said to be
concave if every chord connecting two points on its graph lies on or below the graph.
As we shall see later, concavity of the ground-state energy is the key to DFT.

The subgradient inequality gives the Hohenberg—Kohn theorem directly. Let the
potentials u, v € Vp differ by more than an additive constant and let p,, p, € AN
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be the corresponding ground-state densities. From (2), we then obtain the strict sub-
gradient inequalities E(u) < E(v) + (u —v | py)and E(v) < E(u) + (v —u | py).
Adding these together, we conclude that (v — u | py — py) < 0 and hence that p,, # p,
in accordance with the Hohenberg—Kohn theorem. The Hohenberg—Kohn theorem is
thus a simple consequence of the (strict) concavity of the ground-state energy in the
external potential, which in turn follows from the Rayleigh—Ritz variation principle
and the linearity of the Hamiltonian in the potential.

1.3 Hohenberg—Kohn and Lieb variation principles

Note that the subgradient inequality of the ground-state energy is also the key to
the Hohenberg—Kohn variation principle. For a v-representable density p — v,, the
Hohenberg—Kohn universal density functional [14] is defined as

Fuk(p) = E(vp) — (vplp),

where Fyg: Axy — R and E: Vy — R. Combining this definition of Fyx with the
subgradient inequality of equation (2) expressed as E(v,) — (v,|p) > E(v) — (v | p),
we obtain

Fuk(p) = E(v) — (v | p),
valid for every p € #Ax and for every v € Vy. From this inequality, the Hohenberg—
Kohn and Lieb variation principles, respectively, follow directly:

E(v) = min (Fuk(p) + (v | p)) forallv e Vy, 3)
PEAN

Fux(p) = max (E(v)—(v]p)  forallpe Ay. “4)
VEVN

We may thus calculate the ground-state energy from the universal density functional
by the Hohenberg—Kohn variation principle [14]; conversely, the universal density
functional is obtained from the ground-state energy by the Lieb variation principle.
Together, these variation principles highlight a symmetry or duality between poten-
tials and ground-state densities and also between the ground-state energy and the
universal density functional. However, this duality was not emphasized in the work by
Hohenberg and Kohn, who considered only the first variation principle equation (3).
Lieb was the first to study both variation principles rigorously, within the framework
of convex analysis [21].

We note the v-representability problem of Hohenberg—Kohn theory and the vari-
ation principles established above: the sets Ay and Vxy do not form vector spaces
and are not explicitly known. Also, we have no optimality conditions except by the
Hohenberg—Kohn mapping p > v,. These restrictions will be lifted with the devel-
opment of the constrained-search formalism of Levy [20] and the convex formulation
by Lieb [21].
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1.4 Vector spaces of densities and potentials

To proceed, we will need to work with vector spaces that contain all densities and all
potentials of interest to us. Lieb introduced the complete vector spaces

X =L*R>)NL'R?Y, X*=L*R? + L®R?),

where the space of potentials X * is dual to the space of densities X, thereby ensuring
that all interactions (v | p) with p € X and v € X* are finite. While X* is suffi-
ciently large to include all Coulomb potentials, X contains all normalized densities
arising from N -electron states of a finite kinetic energy — such densities are said to
be N -representable. The set of N -representable densities I can be characterized in
a simple manner,

Iy = {pe X ‘ p=>0, /p(r)drz N, Tw(p) < —|—oo},
where Tw: Iny — [0, 400] is the von Weizsdcker kinetic energy functional
1
(o) = 5 [ 1620 ar. )

It can be shown that Iy is a convex set and that Ty is a convex function, meaning
that, for each pair of different densities p;, p» € In and every A € (0, 1), the convex
combination Ap1 + (1 — 1) p, also belongs to Iy and that Ty satisfies the convexity
characterization of a convex function:

Tw(Apr + (1 = A)p2) < ATw(p1) + (1 — A)Tw(p2).

We note that Ay C Iny € X.

Even though X* contains all Coulomb potentials, it does not contain all poten-
tials that may be of interest to us — harmonic potentials, for example, support an
electronic ground state but are not contained in X *. Indeed, this limitation of the the-
ory was already indicated in the title of Lieb’s 1983 paper [21]: “Density functionals
for Coulomb systems”. The restriction is fairly mild, however, and does not reduce
the usefulness of the theory significantly. In keeping with this limitation, we redefine
YV to be the set of potentials in X* that support a ground state: Vy € X*.

1.5 Levy-Lieb constrained-search functional

While Hohenberg—Kohn theory is based on the Schrodinger equation, the constrained-
search theory is based on the Rayleigh—Ritz variation principle for the ground-state
energy E: X* — R, which for pure states may be written as

E(v) = (WIH )| ¥). (6)

inf
V>N
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The ground-state energy E(v) is well defined (finite) for each v € X* provided the
minimization is over all antisymmetric N -electron wave functions of a finite kinetic
energy, as indicated by the notation W — N. We note, however, that the infimum
is not always achieved — for the oxygen atom, for example, a minimum is obtained
for atoms containing up to nine electrons, but no minimum exists for more than nine
electrons. In other words, the potential vz (r) = —Ze?/(4mweor) with Z = 8 belongs
to Vy when N < 9but not when N > 9. Nevertheless, £ (v) as given by equation (6)
is well defined in all cases and we use the term ‘ground-state energy’ even when the
infimum is not achieved and no ground state exists.

Following the seminal work of Levy [20], we now rewrite the Rayleigh-Ritz
variation principle of equation (6) in the manner

E() = inf inf (V|H(v)|V¥),
pelny Yi—>p

where the short-hand notation ¥ — p indicates that the minimization is restricted to
wave functions with density p. Introducing the Levy-Lieb constrained-search func-
tional Fiy: Iy — [0, +00] on the set of N -representable densities by

Fii(p) = anf (VIH(0)|W),
=P

where H(0) = T + W, we arrive at the following Hohenberg—Kohn variation prin-
ciple for v € X* (see [20]):

E(v) = piGI}ﬁ/(FLL(p) + (v | p)).

Since I x and X * are explicitly known, the v-representability problem of Hohenberg—
Kohn theory has been solved.

1.6 Discontinuity of the universal density functional

Although the constrained-search theory solves the v-representability problem, the
question regarding the optimality conditions in the Hohenberg—Kohn variation prin-
ciple remains. Since Fyp is defined on the vector space X, it is tempting to assume
that we can use the Euler equations for this purpose, since we no longer need to
worry about whether or not the functions in the immediate neighbourhood of optimal
functions are v-representable:

§FLL(p) _
8p(r)
However, use of the Euler equations presumes that the density functional is differ-

entiable. Unfortunately, differentiability is precluded by the fact that the universal
density-functional is discontinuous [19].

—v(r) +c, ceR. (7)
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JIN I SN I SN

Figure 2. A convergent sequence of densities with a divergent von Weizsécker kinetic energy.

To illustrate, consider a one-electron system, for which the universal density
functional has an explicit form, being equal to the von Weizsdcker functional of
equation (5). A one-electron Gaussian density of unit exponent has a finite kinetic
energy:

_3 3
p(r) = 2 exp(—r?)., Tw(p) = ZEh-

Let now {p, },= be a sequence that approaches p in the norm of X:

lim |lp—pallx =0,
n——+o0o

while developing increasingly rapid oscillations of increasingly small amplitude, as
illustrated in Figure 2. The kinetic energy Tw (o) is then driven arbitrarily high in the
sequence, implying that 7y is not continuous:

: . 3
lim Tw(pn) = +o0 # Tw( lim pn) = ZE.
n—00 n—o00 4

Since it can be shown that Ty < Fjp for each N > 1, this result also means that
F11 is discontinuous and hence not differentiable. Consequently, the Euler equations
in equation (7) are not well defined. We will return to the problem of identifying
minimizers in the Hohenberg—Kohn variation principle later, when the proper tools
have been developed.

1.7 Rayleigh—Ritz variation principle for ensembles

Our next step is to generalize the constrained-search theory to ensembles, taking as
our starting point the canonical-ensemble Rayleigh—Ritz variation principle:

E() = inf tr(yH(v)). (8)
y—N

Here each density matrix y is a normalized self-adjoint trace-class operator on the
N -electron Hilbert space, which may be given the spectral decomposition

o0 o0
y =D MW) Wl A =0, > =1,

i=1 i=
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in terms of an orthonormal basis {W; }?2 | . The expectation value in equation (8) may
then be written as

oo
w(yH®©) = Y A (W | H©)|¥;).
i=1
Each M -degenerate ensemble ground-state density matrix obtained from (8) using
v € Vy is a (finite) convex combination of M pure ground-state density matrices,

M M
vo= Aoil%oi)(Woil. Aoi =0. D Ao =1,

i=1 i=1
where each Wy, is a ground-state wave function obtained from equation (6) with the
same potential v. By the same token, each ensemble ground-state density is a convex
combination of pure ground-state densities with the same potential. Generalizing the
concept of v-representability to ensembles, we say that a density p € I y is ensemble
v-representable if it is the ensemble ground-state density for some external potential
v € V. The set of all ensemble v-representable densities is denoted by By . Clearly,
Ay C By.

It should be emphasized that the Rayleigh—Ritz variation principle for pure states
and the Rayleigh—Ritz variation principle for ensembles give the same ground-state
energy for every v € X* — the only difference is that more solutions (minimizing
density matrices) are obtained with the ensemble variation principle.

1.8 Lieb constrained-search functional

Proceeding as for pure states, we obtain from the ensemble Rayleigh—Ritz variation
principle in equation (8) the ensemble Hohenberg—Kohn variation principle

E(v) = inf (Fpm(p) + (v | p)),
pEIN
where the Lieb density-matrix constrained-search functional [21] is given by
Fpm(p) = inf tr(yH(0)).
Yo
A nontrivial result due to Lieb [21] is that the infimum is always achieved,
Fom(p) = min tr(y H(0)) = tr(y, H(0)). ©)

with important implications for the theory. A similar result holds for Fyy .
Since the constrained search over ensembles in Fpy includes the constrained
search over pure states in Fyy, we conclude that

Fpm < FiiL.
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In fact, Fpm # FrL, since there exist densities p € Iy for which Fpy(p) < FLo(p).
Nevertheless, both functionals are admissible, meaning that both give the correct
ground-state energy for every potential in the Hohenberg—Kohn variation principle.
They differ only in that Fpy; gives more minimizing solutions — specifically, each
minimizing density obtained with Fpy is a convex combination of those obtained
with Fi1. The reason for this behavior is that Fpy is the convex hull of Fij — that is,
its greatest convex lower bound [21].

Convexity is a powerful property of Fpy, with far-reaching consequences for the
theory. The proof is simple. Let p1, p» € I be different and let A € (0, 1). There
then exist by equation (9) minimizing density matrices y1 — p1 and Y — p2 in Fpm
such that Fpy(p1) = tr(y1 H(0)) and Fpm(p2) = tr(y2 H(0)). By the definition of
Fpwm, we then have

Fou(tor +(1=2)pz) = ' min  (yH(0)
< w((Ay1 + (1 = )y2) H(0)), (10)

where the inequality holds since Ay; 4+ (1 — A)y2 = Ap1 + (1 — A)p; is an allowed
(but not necessarily minimizing) density matrix in the constrained search. Reintro-
ducing Fpy on the right-hand side of equation (10), we obtain

Fom(Apr + (1 = A)p2) < AFpm(p1) + (1 — A) Fom(p2)

verifying convexity.
Another important property of Fpy is lower semi-continuity [21], meaning that,
for each p € X and each sequence {p, },~, converging to p, we have

liminf Fpm(pon) = Fom(p).
n—oo

Roughly speaking, lower semi-continuity at p means that Fpy may jump up but not
down as we move away from p. Functions that are both convex and lower semi-
continuous are said to be closed convex, an important, well-behaved class of convex
functions to which Fpy belongs.

1.9 Minimizing densities

A useful property of convex functions is that every local minimum is a global min-
imum, greatly simplifying their minimization. Since Fpy is convex, it follows that
o= Fpm + (v | p) is also convex, implying that every local minimizing density in
the (ensemble) Hohenberg—Kohn variation principle is a global minimizer. Moreover,
for a given potential v € X *, the set of minimizers constitute a convex set, which is
nonempty if and only if v € Vy.

Let us consider the relationship of the minimizing densities in the Hohenberg—
Kohn variation principle to the ground-state densities in the Rayleigh—Ritz variation
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principle. Since Fpm(p) + (v | p) = miny, tr(yH(v)), we may write

inf), tr(yH (v)), Rayleigh—Ritz variation principle,

E() = { (11)

infye 7, miny, s, tr(yH(v)), Hohenberg—Kohn variation principle,
where the searches in the two variation principles are over the same complete set of
density matrices. Therefore, if v € Vy, then the infimum is achieved by the same
density matrices in both cases:

E() = mintr(yH(v)) = min min tr(yH(v)), v € Vy.
¥ pely VP

It follows that the minimizing densities in the Hohenberg—Kohn variation princi-
ple are precisely the ground-state densities in the Rayleigh—Ritz variation principle.
We note how this result depends critically on the existence of a minimizing density
matrix y — p in the constrained-search functional in equation (9) and hence in equa-
tion (11), precluding the existence of minimizing densities in the Hohenberg—Kohn
variation principle that are not ground-state densities.

In conclusion, the ensemble Hohenberg—Kohn variation principle is faithful in
the sense that it gives not only the same ground-state energy as does the ensem-
ble Rayleigh—Ritz variation principle, but also the same ground-state densities, when
these exist. A similar result holds for pure states, with the Levy-Lieb functional.

1.10 The Lieb functional and variation principle

Let us now develop DFT within the framework of convex analysis. The key to this
development is the concavity of the ground-state energy E: X* — R (alluded to in
Section 1.2), meaning that the interpolation characterization

E(Avy + (1 =2)v2) = AE(v1) + (1 = A) E(v2)

holds for each pair vy, v, € X* and each A € (0, 1). To demonstrate concavity, we
first note that H(Avy + (1 — A)vp) = AH(v1) + (1 — A) H(v;) holds by the linearity
of v > H(v). We may therefore rewrite the Rayleigh—Ritz variation principle (here
in a pure-state formulation) as

E(Avi + (1 =A)vy) = igf(lp | HAvy + (1 = A)vy) | W)
= inf(A(W | H(vy) [ W) + (1 = D)W | H(v2) [ V).
Minimizing the two expectation values separately, we obtain
E(Avi + (1 =21)vy) > igf)t(\I’ | H(vy) | W) + igf(l — )V | Hv) | &)

= Xif(¥ | H() | W)+ (1= 2)inf(¥ | H() | 9), (12)
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where the last step follows since A and 1 — A are both nonnegative. Concavity of the
ground-state energy is thus an immediate consequence of the Rayleigh—Ritz varia-
tion principle and of the linearity of the Hamiltonian in the external potential. We
note that the proof of concavity does not carry through for excited states (except for
the lowest state of each symmetry) since the Rayleigh—Ritz minimization is then sub-
ject to orthogonality constraints that depend on the external potential, precluding the
inequality in equation (12) from being established.

Since the ground-state energy is concave and everywhere finite, it is also continu-
ous and hence closed concave. We may then apply the Fenchel-Moreau biconjugation
theorem of convex analysis to deduce the existence of a closed convex function
F:X — R such that

E() = inf (F(p) + (v ]p)), veXT, (13)
peX
F(p) = sup (E(w)—(][p). peX, (14)
veX*
where R = [—00, oo] denotes the extended real numbers. The function F is the Lieb

universal density functional. The Lieb functional F and the ground-state energy E are
said to be conjugate functions or Fenchel conjugates. Since F can be calculated from
E and vice versa, the two functions contain the same information, only encoded in
different ways — each property of one function is exactly reflected in some property
of its conjugate function. Fenchel conjugation is a generalization of the Legendre
transformation — the relationship between the ground-state energy and the universal
density functional in DFT is thus similar to the relationship between the Hamiltonian
and the Lagrangian in classical mechanics.

Comparing the Hohenberg—Kohn variation principles in equation (9) and equa-
tion (13), we note that the variation is over all X in equation (13) but only over { y in
equation (9). If Fpy is extended from Iy to X by setting it equal to +ocoon X \ Iy,
then the extended Fpy remains closed convex and satisfies the same Hohenberg—
Kohn variation principle as does the Lieb functional F' in equation (9). However, by
the Fenchel-Moreau theorem, there exists only one closed convex function F on X
that is conjugate to the closed concave function £ on X*, meaning that the Lieb
functional in equation (14) and the density-matrix constrained-search functional in
equation (9) are the same functional [21]:

F = Fpm.
Furthermore, this functional is the lower bound to all admissible density functionals
and the most well behaved such functional, being closed convex.

In short, DFT is essentially an exercise in convex analysis predicated on the con-
cavity and continuity of the ground-state electronic energy v + E(v). The concepts
and tools of convex analysis are therefore well suited to DFT, from a computational
as well as theoretical point of view.
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1.11 Convex conjugation: A one-dimensional differentiable model

To understand the conjugate relationship between the ground-state energy and the
universal density functional better, we will consider two one-dimensional models of
the energy &: R — R and the density functional :R — R that satisfy the Fenchel
conjugations

E(v) = /jgﬂf{{(f”(p) +@lp). Flp)= Su]g(g(v) — (v [p). (15)

where the interaction between the potential and density is now the simple scalar prod-
uct (v|p) = vp. We begin by considering in this section the differentiable functions
plotted in Figure 3. In agreement with the true ground-state energy, we assume that
& <0 with §(0) = 0. In addition, we assume that & is twice differentiable with
&” < 0 and limy— 1o &' (v) = Foo. Strict concavity is unphysical since it implies
that & (v) < O for repulsive potentials v > 0, but we accept this unphysical behaviour
for the time being in order to explore the consequences of strict concavity.

Consider now the condition for a maximizing potential in the Lieb variation prin-
ciple in equation (15). By the derivative assumptions on &, a maximizing potential
v € R exists for every p € R as the solution to the stationarity condition p = &'(v) —
in this case, even for the nonphysical negative densities. Since &’ is strictly decreas-
ing, this mapping from potentials to densities can be inverted to give the Hohenberg—
Kohn mapping from densities to potentials, which we recognize as the stationary

condition in the Hohenberg—Kohn variation principle: v = —%'(p). We thus have
two equivalent optimality conditions:
—F'(p)=v < &'(v) =p. (16)

The ground-state energy and the universal density functional are therefore functions
whose derivatives (to within a negative sign) are each other’s inverse functions. These
inverse relationships are illustrated in Figure 3, which shows how we may generate

1k E'(v) 1+ 5 1+t
F(p)

E(v,

Figure 3. A strictly concave function &: R — (—o0, 0] (left) with a strictly convex conjugate
function ¥ —[0, +00) (right). Their derivatives are plotted in the middle.
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F by differentiation of & (left plot), inversion of &’ to obtain —%” (middle plot),
followed by integration of ¥’ to yield ¥ (right plot). Although simple, this example
illustrates the essence of DFT.

1.12 Convex conjugation: A one-dimensional nondifferentiable model

We have seen how, in a simple model, the Hohenberg—Kohn mapping follows from
strict concavity of the ground-state energy. The true energy is not strictly concave,
however, only concave. For example, when a scalar u is added to the potential, the
energy changes linearly, in the manner u — E(v + u) = E(v) + uN, where N is
the number of electrons. Also, we have E(v) = 0 for all repulsive potentials v > 0,
thereby violating strict concavity. There may be more ways in which strict concav-
ity is violated, but these two violations can easily be explored by a one-dimensional
model. In Figure 4, we have plotted a model energy &: R — (—o0, 0] that is linear on
[—1, —%] with slope % and linear on [0, +00) with slope 0. Also, & is nondifferen-
tiable at —1 and —%.

The effect on the density functional ¥ : R — R by this modification is dramatic.
First, ¥ (p) = +oo for nonphysical densities p < 0, which is a consequence of the
fact that & (v) = O for all repulsive potentials v > 0:

Fp) = Su]g(é?(v) —(l[p)= supo(g(v) —(lp)= Slipo(—(v | p)) = +o0.

Second, ¥ becomes nondifferentiable at p = 0 and p = % — that is, at the slopes of
the linear segments of &. From the middle plots in Figure 4, we note that each hori-
zontal segment of v > (v, &'(v)) corresponds to a vertical segment of p > (p, F'(p))
and vice versa, meaning that each linear segment of v — (v, &(v)) corresponds to
a kink of p — (p, ¥ (p)) and vice versa. Roughly speaking, therefore, we may asso-
ciate nondifferentiability of ¥ with nonstrict concavity of &.

Figure 4. A concave function §:R — (—o00,0] (left) and its convex conjugate function
F:R — [0, +00] (right) with their subgradients plotted in the middle.
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Since E and F are nondifferentiable, we cannot express the optimality conditions
in terms of derivatives, as done in equation (16). Instead, we introduce for a convex
function f:R — R the subdifferential of f at x by

Af (x) = [fL(x), fL ()], (17)
where f’(x)and f (x) are the left and right derivatives, respectively, of f atx.Each
m € df(x) is then the slope of a supporting line to f and x, known as a subgradient
of f at x. Returning to Figure 4, we see that 0 (p) = {F'(p)} everywhere except at
the nondifferentiable points, where % (0) = (—o0, 0] and 05 (%) = [%, 1]. At these
points, we have plotted supporting lines to ¥ for illustration. For the ground-state
energy, we have the equality d&€ (v) = {&’(v)} everywhere except 08 (—1) = [%, 2]
and 88(—%) =1, %].

Subgradients allow global minima (maxima) of convex (concave) functions to be
identified in a simple manner: for a convex (concave) function f:R — R, a point
x € R is a global minimizer (maximizer) if and only if 0 € df(x). The condition
for a minimum in the Hohenberg—Kohn variation principle in equation (15) is there-
fore that the subdifferential of the convex objective function p — F (p) + (v | p)
contains zero. Since 3(F (p) + (v | p)) = dF (p) + v, this condition is equivalent to
—v € 3% (p); likewise, the condition for a global maximum in the Lieb variation prin-
ciple becomes p € d& (v). In terms of subgradients, the optimality conditions of the
Hohenberg—Kohn and Lieb variation principles are therefore

—v € 0dF (p) < p < d&(v),
which reduce to the stationary conditions in equation (16) when both functions are
differentiable. The ground-state energy & and the density functional ¥ are there-

fore functions whose subdifferential mappings 06:R = R and 0¥ :R = R are each
other’s inverse multifunctions, as illustrated in the middle plot of Figure 4.

1.13 Hohenberg-—Kohn and Lieb optimality conditions

To set up the optimality conditions of the Hohenberg—Kohn and Lieb variation
principles for the exact ground-state energy E and universal density functional F,
we must generalize subdifferentials and subgradients to functions on vector spaces.
For the concave ground-state energy E: X* — R and the convex density functional
F:X — R, the subdifferentials at v € X* and p € X are, respectively, given by

EW)={peX |E@)<EW@)+ @ —v|p)forallt € X*, E(v) € R}, (18)
IF(p) ={v e X" | F(p) = F(p) + (v|p—p) forall p € X, F(p) e R}.  (19)

The subdifferentials dE(v) C X and dF(p) C X* are convex sets, which may or
may not be empty. In equation (18), we recognize the subgradient inequality from
equation (2), where it was defined on Vy C X. Also, it is a simple exercise to check
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that 0F (p) in equation (19) reduces to that of equation (17) for convex functions on
the real axis.

Proceeding as in the one-dimensional case, we find that the optimality conditions
of the Hohenberg—Kohn and Lieb variation principles are given by

EWw)=F(()+ | p) < —vedF(p) <= pecIE{). (20)

The subdifferential mappings 0F (p): X = X* and 0E (v): X* = X clearly play an
important role in DFT, setting up the mappings between densities and potentials.

It is instructive to consider in detail the subgradient condition on the density func-
tional. Using the constrained-search expression for Fpy = F given in equation (9),
we obtain-1mm

—v € dF(p) <= (Vpe X):F(p) = F(p) — (v|p—p)

— (VpeX):F(p)+ (v|p) = F(p) + (v | p)
< (Vp € X):min tr(yH(v)) > )1/11irl1) tr(yH (v))
yep e

— il)}ftr()/H(U)) > tr(ypH(v)). 1)

where y, is a ground-state density matrix of H(v), thereby verifying that the con-
ditions —v € dF(p) <= p € dE(v) hold if and only if p € By is an ensemble
ground-state density of v € Vy. In particular, p ¢ By if and only if dF(p) = @.
By a general result of convex analysis, F is subdifferentiable on a dense subset
of Ix. The set of ensemble v-representable densities is therefore dense in the set
of N -representable densities.
Next, we verify that the subgradients in dF (p) are identical up to a scalar. Let
o be a ground-state density associated with the external potential v, € Vy so that
—v, € 0F(p). Using equation (20) and the expression for the subgradient inequality
given in (2), we obtain
—v, € 0F(p) <= p € IE(vp)
E(u) < E(vp) + (u—v,lp) forallu ¢ v, + R,
E(u) = E(vp) + (u—vp|lp) forallu € v, + R,
E(vy) > E(u) + (vp —ulp) forallu ¢ v, + R,
E(vp) = E(u) + (vp —ulp) forallu € v, +R.

After this rearrangement of the subgradient inequality, we use equation (18) to give
p ¢ dE(u) forallu ¢ v, + R,
p€dE(u) forallu €v,+ R,

—u ¢ 0F (p) forallu ¢ v, + R,
—u € 0F(p) forallu e v, + R,

—v, € 0F(p) <= {

(22)
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in accordance with the Hohenberg—Kohn theorem. Our results from (21) and (22) are
summarized as follows:

OF (p) = 2, p ¢ Bn,

v, + R, pe B,

Q, v ¢ 'VN,
dE(v) = { Mo, Mo, '

Zi=1 Ai Pui } Zi:l Ai=1,4; > 0}1 v eV,

where v, is an external potential such that /1 (v,) supports a ground state with ground-
state density p € By, whereas {pvi}f‘il are the M degenerate pure ground-state
densities of v € Vy. Note that dE(v) is empty when v does not support a ground
state.

1.14 Moreau-Yosida regularization

Realizing that nondifferentiability is an unavoidable feature of the density functional
conjugate to the exact ground-state energy, we may instead work with the modified
energy functional

1
E,(v) = E(v) — Eyllvllz (23)

with y > 0. Modified in this manner, the ground-state energy becomes strictly convex
with a differentiable conjugate density functional

~ .
Fy(p) = min(F() + 5 17— pl?).

which is the Moreau—Yosida regularization of the Lieb functional [17]. The smooth-
ing parameter y > 0 can be adjusted, noting that F, (p) approaches F(p) pointwise
from below as y — 0 from above. It is an attractive regularization in that, for each v,
the true energy £ (v) can be recovered exactly from E,, (v) according to equation (23).
A slight complication of the Moreau—Yosida regularization is that Coulomb
potentials are not square-integrable, as required to construct E,. This problem may
be avoided by putting the system in a large box or by truncating the Coulomb poten-
tial at large separations. In any case, Moreau—Yosida regularization shows that, even
though the exact density functional is not differentiable, it is “almost” differentiable,
justifying the construction of differentiable density-functional approximations.

1.15 Four-way correspondence of density-functional theory

An important aspect of Lieb’s approach to DFT is its flexibility in describing extended
density functional theories. In particular, we consider two cases, orbital-free DFT
and DFT in the presence of a magnetic field. In both of these cases, the energy
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becomes a bifunctional with dependence on additional variables. In orbital-free DFT,
the density functional in the context of grand canonical ensemble DFT depends on
both the charge density p and the chemical potential p. For DFT in the presence
of an external magnetic field, two approaches have been suggested: magnetic-field
density-functional theory (BDFT) [6,28], in which the density functional depends on
the charge density p and the external vector potential associated with the magnetic
field A; and current-density functional theory (CDFT) [39,40], in which the density
functional depends on the charge density p and the paramagnetic component of the
current density j,. A useful concept for these extended theories is the four-way corre-
spondence of DFT, which helps to identify the relationships between the bifunctionals
in each of these approaches.

Figure 5 shows the four-way correspondence for orbital-free DFT in the left panel
and for DFT in a magnetic field in the right panel. In orbital-free DFT, the energy
&(v, N) is a functional of the external potential v and the particle number N. The
corresponding density functional depends on the charge density p and the chemical
potential w. This highlights the nature of the optimization problem in orbital-free DFT
as a convex—concave saddle function. In [26], an optimization scheme was developed
explicitly accounting for the saddle nature of the optimization, resulting in more rapid
convergence for finite systems with all electrons included.

For DFT in the presence of a magnetic field, the four-way correspondence in Fig-
ure 5 clarifies the connections between the functionals involved in BDFT and CDFT.
In particular, the variation principle used in BDFT corresponds to the partial conju-
gation p — u from ¥ to &, whilst in CDFT the variation principle corresponds to
the full conjugation (p, jp,) — (4, A) from § to & — see [25] for a more detailed dis-

H(p,N) Zip.jp)
o o
P \ ﬁp P
» . 2 > «
H(p, ) &(v,N) 7 (u, ) 3 F(p,A)
# 2y # . /
u v i A:/
o
///
E(v, 4) &(u,A)

Figure 5. The four-way correspondence for orbital-free DFT (left) and DFT in a magnetic field
(right). The black horizontal and vertical arrows represent bi-conjugations of both variables
simultaneously. The solid diagonal arrows indicate skew conjugations of one of the variables
independently. The dashed blue and red arrows indicate the dual relationships between the
relevant variables.
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cussion of these functionals. The full mathematical characterization of CDFT using
convex analysis similar to Lieb’s original formulation for standard DFT has recently
been completed [18,37].

In both of these cases, the extended density functional theories can be described
using the techniques of convex analysis as in Lieb’s pioneering 1983 paper [21]. In
doing so, key features of the mathematical structure of the approaches and their inter-
relations are clearly revealed.

2 Applications of the Lieb variation principle

The work of Lieb to establish the variation principle of (14) has led not only to a clear
and rigorous framework for understanding the concepts underpinning DFT, but also
to a wide range of practical applications. We review various applications of the Lieb
variation principle, demonstrating how it may be utilized to calculate the Kohn—Sham
potential of atoms and molecules, to study the adiabatic connection and calculate
the exchange—correlation functional from high-precision many-body methods, and
to study the exchange—correlation hole and energy densities of atoms and molecules.

We here pragmatically treat the density functional as differentiable, both as a func-
tion of the density and of the interaction strength. We justify this practice by noting
that all approximate density functionals are taken to be differentiable and that the
exact density functional is “almost differentiable” in the sense that it may be approxi-
mated to any accuracy by a differentiable Moreau—Yosida regularized functional [17].

2.1 Studying the Kohn—Sham noninteracting system

Consider a simple generalization of the Hamiltonian in (1) to include an interaction-
strength dependent two-electron interaction (in atomic units),
N
Hy(w) =T + W+ ) v(r), (24)
i=1
where the interaction strength between two electrons i, j is modulated by a parameter
A eR,

1
Wi =Y walryj). wolry) =0. wi(ryj) = —, (25)
— Tij
i<j
here chosen such that A = 0 corresponds to a noninteracting system of electrons and
A =1 to the Hamiltonian for the usual physical system. The ground-state energy
associated with this Hamiltonian is E, and the corresponding interaction-strength

dependent Lieb variation principle [21] is

F(p) = Sug*(Ex(v) = (v p). (26)
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This interaction-strength dependent functional provides a powerful tool to study elec-
tronic systems at any interaction strength. In particular, in Kohn—Sham theory, we are
often concerned with a noninteracting system of electrons (A = 0) having the same
density as that of the physical system (A = 1). The properties of this system can be
readily studied using equation (26) simply by setting A = 0 and using an accurate
density for the physical system as input to Fo(p).

Savin and Colonna [3, 30] presented the first practical calculations of the Lieb
variation principle in finite basis sets for atomic systems. In their approach, the opti-
mization of the external potential v was carried out directly using the derivative-free
Nelder—-Mead method. To facilitate this optimization, the external potential vey(r)
was expressed in terms of a basis-set expansion with an additional % term, whose
constant C was determined to account for the asymptotic form of the potential with
increasing distance r from the nucleus. Following this work, Wu and Yang [41]
employed a similar expansion for the external potential,

V() = Ve (1) + Vrer(F) + Y by (r), 27)
t

where vy (r) is the external potential due to the nuclei as usually evaluated, vi(r)
is a choice of reference potential selected to capture the long-range asymptotic decay
of the potential, and the final term is a linear combination of Gaussian basis func-
tions g, (r) with coefficients b, that are to be determined using the Lieb variation
principle of equation (26). This expansion is convenient for implementation in finite-
basis molecular codes and allows for direct optimization with respect to b; using
derivative-based (quasi-)Newton approaches. Calculations at the A = 0 limit were
presented in [41], with significantly accelerated convergence relative to the Nelder—
Mead approach of [3]. Many choices of reference potential have been considered for
use in equation (27). Commonly, the Fermi—Amaldi potential [4] has been used. How-
ever, since this potential is not size-consistent, alternatives such as the Slater [31],
Krieger—Li—Iafrate [16], and localized-Hartree—Fock [27] exchange potentials have
also been utilized as size-consistent alternatives.

The noninteracting case of equation (26) is somewhat computationally simpler
than its (partially) interacting counterparts. To see this, consider the A = 0 limit of
H) (v) in equation (24); in this limit, the electronic Schrodinger equation becomes
separable into a set of one-electron equations

1
[—EVE + U(r)]%‘ (r) = ¢igi(r). (28)
which may be solved by diagonalization to give the canonical molecular orbitals

@; (r) and orbital energies &; = {(¢; | —%Vl-z + v(r) | ¢;). The total noninteracting
energy is then simply Eo(v) = > /™ ¢; with the associated noninteracting wave
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function @y = det |¢; - - - @n,.. |- Substitution of this expression into equation (26) for
a v-representable density p leads to
Roce
Folp) = max (2;(% | =3V2 1 o) + (Wlpa, = p)), (29)
=
where pg, is the density associated with ®y. The computational advantage of this
form for Fy(p) is clear since no two-electron integrals are required and no choice of
(partially) interacting wave-function ansatz is required. Instead, all operations amount
to evaluating matrix elements of one-electron operators and solving equation (28)
with the potential of equation (27) at each step of the optimization procedure used
to evaluate equation (29). At convergence, pg, = p and the Lieb functional becomes
the noninteracting Kohn—Sham kinetic energy,

Fo(p) = Ts(p).

Also, for A = 0, the derivative aazblj gl()z ) takes a simple form and so second-order opti-
mization schemes such as the trust-region Newton method can be readily employed,
further accelerating convergence.

Given a sufficiently accurate input density p, which may be obtained from wave-
function-based quantum-chemical methods, equation (29) yields accurate estimates
of the Kohn—Sham noninteracting kinetic energy 75(p), the Kohn—Sham orbitals ¢;
and eigenvalues ¢;, and the Kohn—Sham effective potential vs(r), which may be iden-
tified with the potential of equation (27) at convergence. However, two complications
arise for finite (orbital) basis-set calculations.

Firstly, as pointed out by Harriman [9, 10], in a finite orbital basis, there is no
Hohenberg—Kohn theorem. As a result, the optimizing potential in equation (26) may
not be unique. In a complete orbital basis, the potential is determined up to a constant,
leading to a well-defined shape of the Kohn—Sham potential from equation (29), for
example, and the constant can then be chosen arbitrarily, usually so that the potentials
vanish asymptotically. In finite basis sets, the extra nonuniqueness of the potential
manifests itself in a near singular behavior of % b’j gl()’; ) and convergence to oscillatory
potentials.

Secondly, in finite basis sets, an input density arising from a correlated wave func-
tion may not be exactly represented by the density of a single Slater determinant in
the same basis set; see [9, 10]. In practical calculations, this may manifest itself as
|po, (r) — p(r)| > O for some points r. It is therefore necessary to carefully check the
results of calculations to ensure that any residual density differences are sufficiently
small. In practice, we find that, for small atomic and molecular systems, Gaussian
basis sets of augmented triple-zeta quality are adequate to obtain close approxima-
tions to correlated input densities and that this problem is essentially removed for
basis sets of quadruple-zeta quality and beyond.
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To avoid oscillatory potentials in calculations in finite basis sets, it is necessary
to perform calculations in a regularized manner. Strategies for regularization include
using approaches such as singular-value decomposition or Tikhonov regularization in
second-order optimizations to avoid issues with the singular components of %2; 31(;2 ),
An alternative approach, which emphasizes smoothness of the calculated potentials
is the smoothing-norm approach of [11]. In this approach, a quadratic penalty func-
tion is applied to the energy that penalizes oscillatory solutions. This approach has
the advantage that the objective function, gradient, and Hessian are then consis-
tently modified leading to simple implementation with essentially any optimization
procedure. Interestingly, this approach is closely related to the Moreau—Yosida regu-
larization of convex analysis; see the discussion in [17]. Finally, we note that a similar
regularization can be achieved by tailoring the basis set chosen for use in the expan-
sion of equation (27) — see, for example, [13]. Whilst all of these approaches are
effective in avoiding oscillatory solutions, the results of the calculations must be care-
fully assessed to ensure that the density pg,, (r) remains sufficiently close to the input
density p and that the associated potentials are not over-regularized.

Figure 6 shows the exchange—correlation potentials obtained from the Lieb varia-
tion principle at A = 0. The main features of the potential are clearly captured, includ-
ing the —% asymptotic decay and inter-shell structure. The inset shows the valence
region, where the potentials reproducing the electron density calculated from Hartree—
Fock theory and coupled-cluster single-doubles—perturbative-triples (CCSD(T)) the-
ory are most different.

2.2 Lieb calculations of the adiabatic connection

The adiabatic connection is a central concept in DFT, connecting the noninteract-
ing Kohn—Sham system with the fully interacting physical system. The density-fixed
adiabatic connection, in particular, can be determined by considering how the A-inter-
acting Lieb functional may be expressed in terms of its noninteracting limit and
a correction term,

A
Fip) = Folp) + /0 Fl(p)dv

A
= Tp) + /O W, (o) dv;

here the prime indicates differentiation with respect to interaction strength v. Express-
ing F) (p) in its constrained-search form

F3(p) = min tr(yH,(0)) = tr(yy H;.(0)),
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Figure 6. The exchange—correlation potentials obtained by performing the Lieb optimization at
A = 0 for the neon atom using the Hartree—Fock density (blue) and CCSD(T) density (green)
in the uncontracted aug-cc-pCVQZ basis set. The inset highlights the differences in the valence
region arising from the treatment of electron correlation. The potentials are determined using
the smoothing-norm approach with a regularization parameter of 107> a.u.

differentiating with respect to the interaction strength, and using the well-known
Hellmann—Feynman theorem, we obtain for the linear adiabatic-connection path with
wy(rij) = % in equation (25) the adiabatic-connection integrand

Wi(p) = tr(yy Wy).

The Lieb variation principle therefore allows us to calculate the density-fixed adia-
batic connection directly, by performing calculations for 0 < A < 1 using (26)—(27)
as discussed in [3, 30, 32-36,41].

The integrand W, (p) accounts for all electron—electron interactions. It is custom-
ary to decompose this quantity further into the classical Coulomb energy,

530 = 5 [[ wiptep(es) dry ar

the exchange energy
Eq i (p) = tr(yh Wa) — Ja(p),

and the correlation energy

A
Ees(p) = /0 Wer(0)dv,  Wen(p) = te((v2 — yO)W)). (30)

so that
Fy(p) = Fo(p) + Ji(p) + Ex1(p) + Eca(p).
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Since the integrand is the derivative of each component with respect to the interaction
strength, we see that, for the linear adiabatic connection path with wy (r;;) = %’
the contributions from the classical Coulomb energy and the exchange energy are
constants. The shape of the adiabatic connection is therefore entirely determined by
the correlation contribution of equation (30).

In fact, the shape of the linear-path adiabatic connection can be well under-
stood from a perturbative analysis at A = 0 using Gorling—Levy (GL) perturbation
theory [5]. The correlation energy can be expanded as

o0
Ec(p) = Y A"ES(p).
n=2

where ng‘) is the nth-order GL correlation energy, for which explicit expressions

may be readily derived and implemented. In particular, we see that the expansion of
Wea(p) = Wilp) — Ja(p) — Ex a(p) is given by

Wer(p) = 3 AW (p)

n=1
=" A"+ DEG (o), 31)
n=1

from which is it clear that the slope of the linear-path adiabatic connection is2E gL) (p)-
For dynamically correlated systems, where low-order perturbative expansions pro-
vide a good approximation to E. ;(p), plotting A — W, (p) gives smooth, almost
linear curves. For systems with more significant static correlation (i.e., where a sin-
gle Kohn—Sham determinant is not close to the physical multi-determinantal wave
function), the corresponding plots display significantly more curvature.

The Lieb variation principle is therefore a powerful tool to study not only the
Kohn—Sham noninteracting system, but also the entire adiabatic connection, giving
access to all of the associated A-interacting energies, wave functions and associated
density matrices. To perform practical studies of the adiabatic connection for many-
electron systems in finite basis sets, a key step is to choose an appropriate, sufficiently
accurate, ansatz to determine the input density p in equation (26) and to calculate the
energy E), at each interaction strength. A natural choice for few-electron systems
is full configuration-interaction (FCI) theory, as employed in [3, 33]. However, the
entire repertoire of quantum-chemical methods can be utilized to study larger sys-
tems. Some care is required, however, when setting up optimization procedures to
perform the Lieb maximization in equation (26) when the ansatz for E, is nonva-
riational, such as for Mgller—Plesset and coupled-cluster theories. In particular, the
required derivatives are most conveniently evaluated using the Lagrangian densities
for these approaches [12]; see [33,34] for further details.
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2.3 The adiabatic connection for H,

A simple illustrative example, for which FCI calculations can be readily performed, is
the H, molecule. At short internuclear separations R, this system has a physical wave
function that is well represented by a single Slater determinant. Correlation effects,
whilst important for chemical accuracy, are relatively subtle and the CI expansion has
one large coefficient on the Hartree—Fock determinant, with minor contributions from
excited determinants — characteristic of dynamic correlation. At large R, the system
has a FCI wave function with large coefficients on more than one determinant — char-
acteristic of significant static correlation. At the dissociation limit, the physical wave
function would be well represented by just two determinants, one for each hydro-
gen atom. Intermediate bond lengths capture the regime where the both dynamic and
static correlation effects play a role.

The adiabatic-connection curves for A — W, 1 (p) calculated using the Lieb vari-
ation principle of equation (26) at the FCI level in the uncontracted aug-cc-pCVQZ
basis (for both the orbital and potential expansions) are presented in Figure 7 for
R = 1.4, 3.0, 5.0 and 7.0 bohr. These plots capture the transition from near the
equilibrium geometry to almost dissociated hydrogen atoms and the corresponding
transition from almost purely dynamic to static correlation.

As expected from the perturbative analysis of equation (31), the plot at equilib-
rium geometry displays only subtle curvature — characteristic of low-order dynamical
correlation effects. As R increases, the plots exhibit more rapid curvature — indicative
of more significant higher-order correlation contributions and the relevance of static
correlation. Finally, at large R, close to dissociation, we see a characteristic “L” curve,
a feature of (almost) pure static correlation. This shape arises because the restricted
Kohn-Sham single determinant cannot well represent the A-interacting wave func-
tion, which consists of essentially one determinant for each hydrogen atom at this
geometry. Since the hydrogen atoms are widely separated, there is no dynamical cor-
relation between the electrons. As a result, the curve abruptly changes for small A
values and then is essentially flat, reflecting the fact that, at the dissociation limit
for a restricted Kohn—Sham reference wave function, E4(p) = —%J (p). Therefore,
to cancel the electron—electron interactions at the dissociation limit, we must have
E.(p) = —%J (p). The curve presented at R = 7.0 bohr shows that the behavior with
respect to A is already approximately constant, reflecting the linear behavior of J(p)
with respect to A in equation (2.2).

2.4 An alternative path: Generalized adiabatic connections

As indicated in equation (25), the noninteracting and physical systems can be con-
nected by any number of alternative paths — such adiabatic connections have been
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Figure 7. The linear adiabatic connection for the Hp molecule at internuclear separations
R =1.4,3.0,5.0 and 7.0 bohr (top to bottom).

called generalized adiabatic connections [42]. The Lieb variation principle of equa-
tion (26) can for such connections be applied in the same manner as described in Sec-
tion 2.2 but with E) (p) calculated using W) (p) defined with a different modification
of the electron—electron interaction.

In [35], some common adiabatic paths of relevance to range-separated meth-
ods were examined. In range-separated methods [29], a distinction is made between
long-ranged and short-ranged interactions of electrons. These interactions are typi-
cally partitioned by modifying the electron—electron interaction operator. A common
approach is to use the error function to modulate the electron—electron interactions,
erf(i(Mry) A

c ) = —

wy (rij) = Py T

For small values of A, the long-range interactions are captured, with the shorter-range
interactions being emphasized as A increases towards 1. The value of the Lieb func-
tional varies between Fy(p) = Ts(p) and F;(p) in a manner that reflects the relative
importance of different ranges of electron—electron interaction. In Figure 8, the con-
tributions become progressively localized to small A values as the electron—electron
interactions become predominantly long-ranged at large internuclear separation.

The Lieb variation principle provides insight into the extent to which dynamic and
static correlation can be divided according to the range of interaction. By exploiting
the generalized adiabatic-connection paths in conjunction with knowledge of how the
generalized adiabatic connection behaves for accurate calculations, it may be pos-
sible to devise new approximations to the exchange—correlation energy that more
effectively exploit range-separation techniques.

ELECTRONIC COPY FOR AUTHORS — PLEASE DO NOT CIRCULATE



Lieb variation principle in density-functional theory 553
W, / hartree

1.0
0.8 F

\
o6\

0.4;

\

0.27 \‘K

0.2 0.4 0.6 0.8 1.0 A

Figure 8. The error-function generalized adiabatic connection for the H> molecule at inter-
nuclear separations R = 1.4,3.0, 5.0 and 7.0 bohr (top to bottom).

2.5 The exchange—correlation hole and energy densities

The exchange—correlation hole is a central concept in DFT and its analysis has given
insight into why commonly used semi-local density-functional approximations can
be so successful — see, for example, [1]. The exchange—correlation energy can be
expressed in terms of the exchange—correlation energy density wyc ) as

hxc,)t (I‘, l'/)

ar’. (32
r—1/|

The exchange—correlation hole at interaction strength A is given by
Py 5 (r,x')
p(r)
where the pair density P, »(r,r’) is obtained using the Lieb variation principle. At

A = 0, the exchange—correlation hole reduces to the Fermi (exchange) hole and so
the Coulomb (correlation) hole can be identified as

hc,l (I‘, l'/) = hxc,l (I‘, I‘/) - hxc,O(rv I‘/).

hxc,l (l‘, l'/) = - /0(1'/),

In Figure 9, the exchange—correlation holes for the H, molecule at internuclear sep-
arations R = 1.4, 3.0, 5.0 and 7.0 bohr are presented, plotted along the bond axis
with the position of the reference electron 0.3 bohr to the left of the second hydrogen
atom, as done in [1]. All required quantities were calculated using the Lieb variation
principle at the FCI level of theory.

At R = 1.4bohr, it is clear that the exchange hole is delocalized with a signifi-
cant amplitude on both atoms. The Coulomb hole is negative close to the reference
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Figure 9. The Fermi (orange, A = 0), Coulomb (green, A = 1) and exchange—correlation (blue,
A = 1) holes for Hy at internuclear separations R = 1.4 (top left), 3.0 (top right), 5.0 (lower
left) and 7.0 (lower right) bohr plotted along the internuclear axis with the position of the
reference electron chosen to be 0.3 bohr left of the right-hand hydrogen nucleus.

point and positive close to the other hydrogen nucleus, leading to an exchange—
correlation hole that is more localized around the reference point than either of its
constituent components. As the bond length increases, this effect becomes more and
more pronounced, with the total exchange—correlation hole being relatively strongly
localized around the reference point already at R = 3.0 bohr, with only relatively
modest amplitude on the left hydrogen atom. For the longer bond lengths, the local-
ization of the exchange—correlation hole is essentially complete, with cancellation of
the Fermi and Coulomb holes far from the reference point.

This behavior of the exchange—correlation hole rationalizes to some extent the
success of popular semi-local exchange—correlation functionals. Semi-local approx-
imations such as generalized-gradient approximations cannot be expected to capture
the strong nonlocality of the Fermi and Coulomb holes. However, when exchange and
correlation are treated together, the overall exchange—correlation hole is more local-
ized and can be effectively modelled by these simple density functionals. For more
detailed discussion of these ideas, see [1].

The exchange—correlation hole is a rather complex quantity, depending explicitly
on the coordinates of two electrons. It is therefore desirable to consider quantities
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that reduce the complexity, whilst retaining enough information to determine the
exchange—correlation energy. One possibility is to consider the energy density wy.
directly as a target for functional development, since one electronic coordinate has
already been removed. Furthermore, it is possible to interchange the order of inte-
gration in equation (32) to generate a coupling-constant averaged energy density,
thereby also removing the A dependence. This simpler function can then be analyzed
in a similar manner to the exchange—correlation potentials generated by approximate
functionals — see, for example, [15]. Another alternative is to consider the angle- and
system-averaged exchange—correlation hole, which takes advantage of the isotropic
nature of the Coulomb interaction,

dQ2
4 dr,
o1

) = 1 / p(6) / heer 4w

where u = r’ — r and the integration over the solid angle 2, averages over all direc-
tions for u. The exchange—correlation energy can then be expressed as

o _
th
Ey = N/ 4nu2ﬂ du.
0 2M

Both of these alternatives provide simpler functions that can be targeted in functional
development. Again, the Lieb variation principle provides access to all of the quan-
tities required to compute these functions accurately using ab-initio methods. The
resulting data can then serve as a benchmark for approximate models.

2.6 Beyond the ground state

The Gross—Olivera—Kohn (GOK) approach to excitation energies [7,8,23] in ensem-
ble DFT can also be studied using the Lieb variation principle [22]. In the GOK
approach, a density matrix of a statistical ensemble is formed as a convex combination
of the M lowest states of the Hamiltonian,

M
Viw = D wilWri)(Psil.

i=1

where the ensemble weights w; satisfy 0 < w;4; < w; and ), w; = 1. The ground
state is |Wy o) and |W, ;>1) are excited states. For an implementation of the Lieb
variation principle for such ensembles, see [2]. Excitation energies can be evaluated

as
dExc,w

ow

Ei—Eo = (g1 —&0) +
P=Pw

Here €1 — ¢¢ is a Kohn—Sham eigenvalue difference, which is corrected by a partial-

ELECTRONIC COPY FOR AUTHORS — PLEASE DO NOT CIRCULATE



T. Helgaker and A. M. Teale 556

derivative term evaluated as

OE e )

3 (Fl,w (p) — Fo,w () — J(pw).
w

Jw p=p% pP=pw

In this way, the Lieb variation principle may also offer insights into the behavior of
the correction term in the GOK approach to excitation energies; see [2] for further
details.

Other approaches to excited states have been developed using perturbation theory
along the linear and generalized adiabatic connections [24], which were discussed in
Sections 2.2 and 2.4. In these cases, the Lieb variation principle was used to deter-
mine the ground-state adiabatic connections and then excitation energies estimated
by perturbation at each value of the interaction strength. The Lieb variation princi-
ple may provide a useful tool for further study of time-independent approaches to
excitation energies in the future.

3 Conclusions

We have seen how DFT is predicated on the concavity and continuity of the ground-
state energy in the external potential — from this fact, DFT follows by application
of convex analysis. In particular, the universal density functional and the ground-
state energy are conjugate functions, containing the same information but encoded
in different ways. While the ground-state energy can be obtained from the universal
density functional by the Hohenberg—Kohn variation principle, the density functional
can be calculated from the ground-state energy by the Lieb variation principle.

The Lieb variation principle is not only theoretically important, giving insight
into the structure of DFT, but it is also a practical computational tool. It allows us to
calculate, for any N -representable density, the universal density functional and the
external potential that supports this density (if such a potential exists). The utility of
this approach has been briefly demonstrated here for determining the Kohn—Sham
potential, the adiabatic connection and detailed information on the exchange and cor-
relation holes, to high accuracy using ab-initio many-body wave function approaches.
This tool can give valuable insight into the numerical behavior of the exact universal
density functional, which may serve as a useful benchmark to guide the development
of approximate models.

It is our view that the beautiful convex formulation of DFT first put forward by
Lieb [21] has not yet received the attention it deserves, as a framework for teaching
DFT and as a tool for further development of DFT — we hope the present overview
goes some way towards rectifying this situation. We also highlighted how Lieb’s
approach can be utilized for extended DFTs such those required for systems in a mag-
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netic field and for orbital-free DFT. This further illustrates how Lieb’s convex formu-
lation of DFT can be used to unify the presentation of different variants and extensions
of DFT and clarify the relationships between them. Lieb’s convex formulation of DFT
continues to illuminate the development of state-of-the-art approaches in DFT almost
forty years after its publication.
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